Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401793, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804201

RESUMO

Protein-based drugs offer advantages such as high specificity, low toxicity, and minimal side effects compared to small molecule drugs. However, delivery of proteins to target tissues or cells remains challenging due to the instability, diverse structures, charges, and molecular weights of proteins. Polymers have emerged as a leading choice for designing effective protein delivery systems, but identifying a suitable polymer for a given protein is complicated by the complexity of both proteins and polymers. To address this challenge, we developed a fluorescence-based high-throughput screening platform called ProMatch to efficiently collect data on protein-polymer interactions, followed by in vivo and in vitro experiments with rational design. Using this approach to streamline polymer selection for targeted protein delivery, we identified candidate polymers from commercially available options and developed a polyhexamethylene biguanide (PHMB)-based system for delivering proteins to white adipose tissue as a treatment for obesity. We also developed a branched polyethylenimine (bPEI)-based system for neuron-specific protein delivery to stimulate optic nerve regeneration. Our high-throughput screening methodology expedites identification of promising polymer candidates for tissue-specific protein delivery systems, thereby providing a platform to develop innovative protein-based therapeutics. This article is protected by copyright. All rights reserved.

2.
Nat Commun ; 14(1): 4011, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419902

RESUMO

The transplantation of mesenchymal stem cells-derived secretome, particularly extracellular vesicles is a promising therapy to suppress spinal cord injury-triggered neuroinflammation. However, efficient delivery of extracellular vesicles to the injured spinal cord, with minimal damage, remains a challenge. Here we present a device for the delivery of extracellular vesicles to treat spinal cord injury. We show that the device incorporating mesenchymal stem cells and porous microneedles enables the delivery of extracellular vesicles. We demonstrate that topical application to the spinal cord lesion beneath the spinal dura, does not damage the lesion. We evaluate the efficacy of our device in a contusive spinal cord injury model and find that it reduces the cavity and scar tissue formation, promotes angiogenesis, and improves survival of nearby tissues and axons. Importantly, the sustained delivery of extracellular vesicles for at least 7 days results in significant functional recovery. Thus, our device provides an efficient and sustained extracellular vesicles delivery platform for spinal cord injury treatment.


Assuntos
Vesículas Extracelulares , Traumatismos da Medula Espinal , Humanos , Porosidade , Medula Espinal/patologia , Axônios/patologia , Vesículas Extracelulares/patologia
3.
iScience ; 26(1): 105885, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36654858

RESUMO

The limited intrinsic regrowth capacity of corticospinal axons impedes functional recovery after cortical stroke. Although the mammalian target of rapamycin (mTOR) and p53 pathways have been identified as the key intrinsic pathways regulating CNS axon regrowth, little is known about the key upstream regulatory mechanism by which these two major pathways control CNS axon regrowth. By screening genes that regulate ubiquitin-mediated degradation of the p53 proteins in mice, we found that ubiquitination factor E4B (UBE4B) represses axonal regrowth in retinal ganglion cells and corticospinal neurons. We found that axonal regrowth induced by UBE4B depletion depended on the cooperative activation of p53 and mTOR. Importantly, overexpression of UbV.E4B, a competitive inhibitor of UBE4B, in corticospinal neurons promoted corticospinal axon sprouting and facilitated the recovery of corticospinal axon-dependent function in a cortical stroke model. Thus, our findings provide a translatable strategy for restoring corticospinal tract-dependent functions after cortical stroke.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa