Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983039

RESUMO

Osteoporosis, a common systematic bone homeostasis disorder related disease, still urgently needs innovative treatment methods. Several natural small molecules were found to be effective therapeutics in osteoporosis. In the present study, quercetin was screened out from a library of natural small molecular compounds by a dual luciferase reporter system. Quercetin was found to upregulate Wnt/ß-catenin while inhibiting NF-κB signaling activities, and thereby rescuing osteoporosis-induced tumor necrosis factor alpha (TNFα) impaired BMSCs osteogenesis. Furthermore, a putative functional lncRNA, Malat1, was shown to be a key mediator in quercetin regulated signaling activities and TNFα-impaired BMSCs osteogenesis, as mentioned above. In an ovariectomy (OVX)-induced osteoporosis mouse model, quercetin administration could significantly rescue OVX-induced bone loss and structure deterioration. Serum levels of Malat1 were also obviously rescued in the OVX model after quercetin treatment. In conclusion, our study demonstrated that quercetin could rescue TNFα-impaired BMSCs osteogenesis in vitro and osteoporosis-induced bone loss in vivo, in a Malat1-dependent manner, suggesting that quercetin may serve as a therapeutic candidate for osteoporosis treatment.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , RNA Longo não Codificante , Camundongos , Animais , Feminino , Humanos , Osteogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/uso terapêutico , Fator de Necrose Tumoral alfa/farmacologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Medula Óssea/patologia , Osteoporose/etiologia , Osteoporose/genética , Ovariectomia/efeitos adversos , Células-Tronco/patologia , Diferenciação Celular , Via de Sinalização Wnt
2.
J Nanobiotechnology ; 20(1): 307, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764961

RESUMO

BACKGROUND: Therapy with genetically modified mesenchymal stem cells (MSCs) has clinical translation promise. Optimizing the targeting migratory ability of MSCs relies on accurate imaging of the distribution and extravasation kinetics of MSCs, and the corresponding imaging results could be used to predict therapeutic outcomes and guide the optimization of the treatment program. Among the different imaging modalities, second near-infrared (NIR-II) optical-resolution photoacoustic microscopy (OR-PAM) has merits, including a fine resolution, a deep penetration, a high sensitivity, and a large signal-to-background ratio. It would be an ideal candidate for precise monitoring of MSCs, although it has not been tested for this purpose so far. RESULTS: Penetrating peptide-decorated conjugated polymer nanoparticles (TAT-CPNPs) with strong NIR-II absorbance were used to label chemokine-receptor genetically modified MSCs, which were subsequently evaluated under intravital NIR-II OR-PAM regarding their targeting migratory ability. Based on the upregulation of chemokine (C-X-C motif) ligand 10 in the inflamed ears of contact hypersensitivity mice, MSCs with overexpression of corresponding receptor, chemokine (C-X-C motif) receptor 3 (Cxcr3) were successfully generated (MSCCxcr3). TAT-CPNPs labeling enabled NIR-II photoacoustic imaging to discern MSCCxcr3 covered by 1.2 cm of chicken breast tissue. Longitudinal OR-PAM imaging revealed enhanced inflammation-targeting migration of MSCCxcr3 over time attributed to Cxcr3 gene modification, which was further validated by histological analysis. CONCLUSIONS: TAT-CPNPs-assisted NIR-II PA imaging is promising for monitoring distribution and extravasation kinetics of MSCs, which would greatly facilitate optimizing MSC-based therapy.


Assuntos
Células-Tronco Mesenquimais , Técnicas Fotoacústicas , Receptores CXCR3/metabolismo , Animais , Camundongos , Microscopia , Análise Espectral
3.
Adv Sci (Weinh) ; 10(33): e2302134, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37870165

RESUMO

The protective blood-brain barrier (BBB) prevents most therapeutic agents from entering the brain. Currently, focused ultrasound (FUS) is mostly employed to create microbubbles that induce a cavitation effect to open the BBB. However, microbubbles pass quickly through brain microvessels, substantially limiting the cavitation effect. Here, we constructed a novel perfluoropropane-loaded microbubble, termed ApoER-Pep-MB, which possessed a siloxane bonds-crosslinked surface to increase the microbubble stability against turbulence in blood circulation and was decorated with binding peptide for apolipoprotein E receptor (ApoER-Pep). The microbubble with tailor-made micron size (2 µm) and negative surface charge (-30 mV) performed ApoER-mediated binding rather than internalization into brain capillary endothelial cells. Consequently, the microbubble accumulated on the brain microvessels, based on which even a low-energy ultrasound with less safety risk than FUS, herein diagnostic ultrasound (DUS), could create a strong cavitation effect to open the BBB. Evans Blue and immunofluorescence staining studies demonstrated that the DUS-triggered cavitation effect not only temporarily opened the BBB for 2 h but also caused negligible damage to the brain tissue. Therefore, various agents, ranging from small molecules to nanoscale objects, can be efficiently delivered to target regions of the brain, offering tremendous opportunities for the treatment of brain diseases.


Assuntos
Barreira Hematoencefálica , Microbolhas , Barreira Hematoencefálica/metabolismo , Células Endoteliais , Ultrassonografia , Endotélio
4.
Biochim Biophys Acta Mol Basis Dis ; 1867(6): 166107, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621651

RESUMO

The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R), known as neural melanocortin receptors, have been implicated to be critical components of the hypothalamic leptin-melanocortin pathway and related to obesity pathogenesis. In contrast to extensive evidence from physiologic, biological, genetic studies demonstrating that MC4R is a critical regulator in obesity, whether MC3R mutation causes obesity is still controversial. In the present study, we screened for coding variants in the MC3R gene of 176 obese individuals (mean BMI 34.84 ± 0.19 kg/m2) and 170 lean controls (mean BMI 20.70 ± 0.08 kg/m2) to assess the prevalence of MC3R mutations in a Chinese cohort. Two novel mutations, A33D (c.C98 > A) and A259T (c.G775 > A), were identified in two subjects with morbid obesity, respectively. A259T was also identified in the carrier's sibling. In vitro functional studies showed that A33D was defective in the cAMP signaling pathway, whereas A259T MC3R had defective maximal binding and cAMP generation in response to NDP- and α-MSH, likely due to decreased cell surface expression. In addition, we showed that A33D and A259T were biased receptors and defect in constitutive activation of ERK1/2 signaling through MC3R might be a cause for morbid obesity. Our sequencing and co-segregation studies combined with comprehensive functional analysis demonstrated that A259T might be predisposing to obesity. Further investigations in larger cohorts will be needed in order to define this association and the specific phenotypic characteristics resulting from these mutations.


Assuntos
Povo Asiático/genética , Mutação , Obesidade/epidemiologia , Receptor Tipo 3 de Melanocortina/genética , Magreza/epidemiologia , Adulto , Estudos de Casos e Controles , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Obesidade/genética , Obesidade/patologia , Transdução de Sinais , Magreza/genética , Magreza/patologia
5.
Theranostics ; 11(14): 6922-6935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093862

RESUMO

Rationale: Early diagnosis of hepatic ischemia-reperfusion injury (HIRI), the major cause of early allograft dysfunction or primary non-function, is critical in orthotopic liver transplantation. However, liver biopsy is still the primary method for HIRI evaluation in clinical practice despite its numerous complications and shortcomings such as hemorrhage and inaccuracy. Herein, we aimed to develop a non-invasive, highly accurate, and specific method for detecting HIRI. Methods: We developed a top-down and bottom-up strategy to fabricate neutrophil biomimetic microbubbles (MBneu). Neutrophil membrane was mixed with liposomes at a defined mass ratio by sonication. The air in the vial was exchanged with perfluoropropane, and then the solution was mechanically vibrated to form MBneu. Results: MBneu retained the neutrophil proteins, preferentially targeted inflamed hepatic tissue in a rat model of HIRI, and demonstrated physicochemical properties typical of liposome-based MBs because of its artificial phospholipid content. With MBneu we can quantitively evaluate the severity of HIRI, which is helpful for early diagnosis and the prediction of outcome. In addition, MBneu was shown to be safe and showed no immunogenicity. Conclusion: We demonstrated molecular ultrasound imaging of HIRI with MBneu. This new synthesis strategy may be applied to different clinical scenarios using other cell types in the future.


Assuntos
Fígado/diagnóstico por imagem , Neutrófilos/metabolismo , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/diagnóstico , Ultrassonografia/métodos , Animais , Biomimética , Lipossomos , Fígado/metabolismo , Fígado/patologia , Masculino , Microbolhas , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/sangue
6.
J Mater Chem B ; 9(13): 3005-3014, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33704309

RESUMO

Photoacoustic (PA) imaging with functional nanoprobes in the second near-infrared region (NIR-II, 1000-1700 nm) has aroused much interest due to its deep tissue penetration and high maximum laser permissible exposure. However, most NIR-II PA imaging is performed using the two-dimensional (2D) imaging modality, which impedes the comprehension of the in vivo biodistribution, angiography and molecular-targeted performance of NIR-II nanoprobes (NPs). Herein, we report the systematic monitoring of biomineralized copper sulfide (CuS) NPs, typical NIR-II NPs, in mouse models by employing NIR-II three-dimensional (3D) PA imaging. The advanced imaging modality provides dynamic information about the 3D biodistribution and metabolic pathway of CuS NPs. We also achieved contrast-enhanced 3D PA imaging of abdominal and cerebral vessels at a high signal-to-background ratio. Moreover, the tumor-targeted CuS NPs conjugated with the bombesin peptide endowed NIR-II 3D PA with superior performance in imaging orthotopic tumors both deep in the prostate and in the brain beneath the intact scalp and skull. Our results highlight the potential of NIR-II 3D PA imaging for the evaluation of the in vivo behavior of NPs, thus providing a promising strategy for screening NPs in clinical translational studies.


Assuntos
Cobre/química , Corantes Fluorescentes/química , Nanopartículas/química , Técnicas Fotoacústicas , Neoplasias da Próstata/diagnóstico por imagem , Sulfetos/química , Animais , Células HEK293 , Humanos , Raios Infravermelhos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/diagnóstico por imagem , Tamanho da Partícula , Células Tumorais Cultivadas
7.
Artigo em Inglês | MEDLINE | ID: mdl-31649620

RESUMO

Adrenocorticotropic hormone (ACTH), and α-, ß-, and γ-melanocyte-stimulating hormones (α-, ß-, γ-MSH), collectively known as melanocortins, together with their receptors (melanocortin receptors), are components of an ancient modulatory system. The clinical use of ACTH in the treatment of rheumatoid arthritis started in 1949, originally thought that the anti-inflammatory action was through hypothalamus-pituitary-adrenal axis and glucocorticoid-dependent. Subsequent decades have witnessed extensive attempts in unraveling the physiology and pharmacology of the melanocortin system. It is now known that ACTH, together with α-, ß-, and γ-MSHs, also possess glucocorticoid-independent anti-inflammatory and immunomodulatory effects by activating the melanocortin receptors expressed in the brain or peripheral immune cells. This review will briefly introduce the melanocortin system and highlight the action of melanocortins in the regulation of immune functions from in vitro, in vivo, preclinical, and clinical studies. The potential therapeutic use of melanocortins are also summarized.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa