Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2309579121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175865

RESUMO

Nigericin, an ionophore derived from Streptomyces hygroscopicus, is arguably the most commonly used tool compound to study the NLRP3 inflammasome. Recent findings, however, showed that nigericin also activates the NLRP1 inflammasome in human keratinocytes. In this study, we resolve the mechanistic basis of nigericin-driven NLRP1 inflammasome activation. In multiple nonhematopoietic cell types, nigericin rapidly and specifically inhibits the elongation stage of the ribosome cycle by depleting cytosolic potassium ions. This activates the ribotoxic stress response (RSR) sensor kinase ZAKα, p38, and JNK, as well as the hyperphosphorylation of the NLRP1 linker domain. As a result, nigericin-induced pyroptosis in human keratinocytes is blocked by extracellular potassium supplementation, ZAKα knockout, or pharmacologic inhibitors of ZAKα and p38 kinase activities. By surveying a panel of ionophores, we show that electroneutrality of ion movement is essential to activate ZAKα-driven RSR and a greater extent of K+ depletion is necessary to activate ZAKα-NLRP1 than NLRP3. These findings resolve the mechanism by which nigericin activates NLRP1 in nonhematopoietic cell types and demonstrate an unexpected connection between RSR, perturbations of potassium ion flux, and innate immunity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nigericina/farmacologia , Potássio/metabolismo , Imunidade Inata , Ionóforos , Proteínas NLR
2.
Mol Cell ; 72(3): 469-481.e7, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30293783

RESUMO

Aberrantly slow translation elicits quality control pathways initiated by the ubiquitin ligase ZNF598. How ZNF598 discriminates physiologic from pathologic translation complexes and ubiquitinates stalled ribosomes selectively is unclear. Here, we find that the minimal unit engaged by ZNF598 is the collided di-ribosome, a molecular species that arises when a trailing ribosome encounters a slower leading ribosome. The collided di-ribosome structure reveals an extensive 40S-40S interface in which the ubiquitination targets of ZNF598 reside. The paucity of 60S interactions allows for different ribosome rotation states, explaining why ZNF598 recognition is indifferent to how the leading ribosome has stalled. The use of ribosome collisions as a proxy for stalling allows the degree of tolerable slowdown to be tuned by the initiation rate on that mRNA; hence, the threshold for triggering quality control is substrate specific. These findings illustrate how higher-order ribosome architecture can be exploited by cellular factors to monitor translation status.


Assuntos
Proteínas de Transporte/fisiologia , Biossíntese de Proteínas/fisiologia , Ribossomos/fisiologia , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , RNA Mensageiro , Ubiquitina , Ubiquitina-Proteína Ligases , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507998

RESUMO

Diphthamide, a modification found only on translation elongation factor 2 (EF2), was proposed to suppress -1 frameshifting in translation. Although diphthamide is conserved among all eukaryotes, exactly what proteins are affected by diphthamide deletion is not clear in cells. Through genome-wide profiling for a potential -1 frameshifting site, we identified that the target of rapamycin complex 1 (TORC1)/mammalian TORC1 (mTORC1) signaling pathway is affected by deletion of diphthamide. Diphthamide deficiency in yeast suppresses the translation of TORC1-activating proteins Vam6 and Rtc1. Interestingly, TORC1 signaling also promotes diphthamide biosynthesis, suggesting that diphthamide forms a positive feedback loop to promote translation under nutrient-rich conditions. Our results provide an explanation for why diphthamide is evolutionarily conserved and why diphthamide deletion can cause severe developmental defects.


Assuntos
Histidina/análogos & derivados , Fator 2 de Elongação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Histidina/química , Histidina/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/genética
4.
Nat Chem Biol ; 12(12): 995-997, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27694803

RESUMO

Diphthamide and the tRNA wobble uridine modifications both require diphthamide biosynthesis 3 (Dph3) protein as an electron donor for the iron-sulfur clusters in their biosynthetic enzymes. Here, using a proteomic approach, we identified Saccharomyces cerevisiae cytochrome b5 reductase (Cbr1) as a NADH-dependent reductase for Dph3. The NADH- and Cbr1-dependent reduction of Dph3 may provide a regulatory linkage between cellular metabolic state and protein translation.


Assuntos
Citocromo-B(5) Redutase/metabolismo , RNA de Transferência/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo
5.
Crit Rev Biochem Mol Biol ; 48(6): 515-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23971743

RESUMO

Eukaryotic and archaeal elongation factor 2 contains a unique post-translationally modified histidine residue, named diphthamide. Genetic and biochemical studies have revealed that diphthamide biosynthesis involves a multi-step pathway that is evolutionally conserved among lower and higher eukaryotes. During certain bacterial infections, diphthamide is specifically recognized by bacterial toxins, including diphtheria toxin, Pseudomonas exotoxin A and cholix toxin. Although the pathological relevance is well studied, the physiological function of diphthamide is still poorly understood. Recently, many new interesting developments in understanding the biosynthesis have been reported. Here, we review the current understanding of the biosynthesis and biological function of diphthamide.


Assuntos
Histidina/análogos & derivados , ADP Ribose Transferases/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Toxinas Bacterianas/metabolismo , Toxina Diftérica/metabolismo , Exotoxinas/metabolismo , Histidina/biossíntese , Histidina/genética , Histidina/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Fatores de Virulência/metabolismo , Exotoxina A de Pseudomonas aeruginosa
6.
Proc Natl Acad Sci U S A ; 109(49): 19983-7, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23169644

RESUMO

Many genes are of unknown functions in any sequenced genome. A combination of chemical and genetic perturbations has been used to investigate gene functions. Here we present a case that such "chemogenomics" information can be effectively used to identify missing genes in a defined biological pathway. In particular, we identified the previously unknown enzyme diphthamide synthetase for the last step of diphthamide biosynthesis. We found that yeast protein YLR143W is the diphthamide synthetase catalyzing the last amidation step using ammonium and ATP. Diphthamide synthetase is evolutionarily conserved in eukaryotes. The previously uncharacterized human gene ATPBD4 is the ortholog of yeast YLR143W and fully rescues the deletion of YLR143W in yeast.


Assuntos
Vias Biossintéticas/genética , Carbono-Nitrogênio Ligases/genética , Genômica/métodos , Histidina/análogos & derivados , Ligases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Autorradiografia , Cromatografia Líquida , Clonagem Molecular , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Histidina/biossíntese , Humanos , Dados de Sequência Molecular , Estrutura Molecular , Radioisótopos de Fósforo , Plasmídeos/genética , Corantes de Rosanilina , Análise de Sequência de DNA , Especificidade da Espécie , Espectrometria de Massas em Tandem
7.
J Am Chem Soc ; 136(17): 6179-82, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24739148

RESUMO

Present on archaeal and eukaryotic translation elongation factor 2, diphthamide represents one of the most intriguing post-translational modifications on proteins. The biosynthesis of diphthamide was proposed to occur in three steps requiring seven proteins, Dph1-7, in eukaryotes. The functional assignments of Dph1-5 in the first and second step have been well established. Recent studies suggest that Dph6 (yeast YLR143W or human ATPBD4) and Dph7 (yeast YBR246W or human WDR85) are involved in the last amidation step, with Dph6 being the actual diphthamide synthetase catalyzing the ATP-dependent amidation reaction. However, the exact molecular role of Dph7 is unclear. Here we demonstrate that Dph7 is an enzyme catalyzing a previously unknown step in the diphthamide biosynthesis pathway. This step is between the Dph5- and Dph6-catalyzed reactions. We demonstrate that the Dph5-catalyzed reaction generates methylated diphthine, a previously overlooked intermediate, and Dph7 is a methylesterase that hydrolyzes methylated diphthine to produce diphthine and allows the Dph6-catalyzed amidation reaction to occur. Thus, our study characterizes the molecular function of Dph7 for the first time and provides a revised diphthamide biosynthesis pathway.


Assuntos
Vias Biossintéticas , Histidina/análogos & derivados , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Deleção de Genes , Histidina/química , Histidina/metabolismo , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
8.
Mol Biol Cell ; 35(9): br16, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024276

RESUMO

The outer dynein arm (ODA) is a large, multimeric protein complex essential for ciliary motility. The composition and assembly of ODA are best characterized in the green algae Chlamydomonas reinhardtii, where individual ODA subunits are synthesized and preassembled into a mature complex in the cytosol prior to ciliary import. The single-cellular parasite Trypanosoma brucei contains a motile flagellum essential for cell locomotion and pathogenesis. Similar to human motile cilia, T. brucei flagellum contains a two-headed ODA complex arranged at 24 nm intervals along the axonemal microtubule doublets. The subunit composition and the preassembly of the ODA complex in T. brucei, however, have not been investigated. In this study, we affinity-purified the ODA complex from T. brucei cytoplasmic extract. Proteomic analyses revealed the presence of two heavy chains (ODAα and ODAß), two intermediate chains (IC1and IC2) and several light chains. We showed that both heavy chains and both intermediate chains are indispensable for flagellar ODA assembly. Our study also provided biochemical evidence supporting the presence of a cytoplasmic, preassembly pathway for T. brucei ODA.


Assuntos
Axonema , Citoplasma , Dineínas , Flagelos , Proteínas de Protozoários , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Flagelos/metabolismo , Citoplasma/metabolismo , Axonema/metabolismo , Dineínas/metabolismo , Proteínas de Protozoários/metabolismo , Microtúbulos/metabolismo , Proteômica/métodos , Cílios/metabolismo
9.
Cell Death Dis ; 15(5): 338, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744809

RESUMO

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (m3C) is a new epitranscriptomic mark on RNAs and METTL8 represents an m3C writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) m3C modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation. The molecular basis for METTL8 dysregulation in GBM, and which METTL8 isoform(s) may influence GBM cell fate and malignancy remain elusive. Here, we investigated the role of METTL8 in regulating GBM stemness and tumorigenicity. In GSC, METTL8 is exclusively localized to the mitochondrial matrix where it installs m3C on mt-tRNAThr/Ser(UCN) for mitochondrial translation and respiration. High expression of METTL8 in GBM is attributed to histone variant H2AZ-mediated chromatin accessibility of HIF1α and portends inferior glioma patient outcome. METTL8 depletion impairs the ability of GSC to self-renew and differentiate, thus retarding tumor growth in an intracranial GBM xenograft model. Interestingly, METTL8 depletion decreases protein levels of HIF1α, which serves as a transcription factor for several receptor tyrosine kinase (RTK) genes, in GSC. Accordingly, METTL8 loss inactivates the RTK/Akt axis leading to heightened sensitivity to Akt inhibitor treatment. These mechanistic findings, along with the intimate link between METTL8 levels and the HIF1α/RTK/Akt axis in glioma patients, guided us to propose a HIF1α/Akt inhibitor combination which potently compromises GSC proliferation/self-renewal in vitro. Thus, METTL8 represents a new GBM dependency that is therapeutically targetable.


Assuntos
Glioblastoma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Metiltransferases , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-akt , Metilação de RNA , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Nus , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , Transdução de Sinais , Metilação de RNA/genética , Receptores Proteína Tirosina Quinases/metabolismo
10.
Cell Death Differ ; 30(8): 1973-1987, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468549

RESUMO

MAD2 is a spindle assembly checkpoint protein that participates in the formation of mitotic checkpoint complex, which blocks mitotic progression. RNF8, an established DNA damage response protein, has been implicated in mitotic checkpoint regulation but its exact role remains poorly understood. Here, RNF8 proximity proteomics uncovered a role of RNF8-MAD2 in generating the mitotic checkpoint signal. Specifically, RNF8 competes with a small pool of p31comet for binding to the closed conformer of MAD2 via its RING domain, while CAMK2D serves as a molecular scaffold to concentrate the RNF8-MAD2 complex via transient/weak interactions between its p-Thr287 and RNF8's FHA domain. Accordingly, RNF8 overexpression impairs glioma stem cell (GSC) mitotic progression in a FHA- and RING-dependent manner. Importantly, low RNF8 expression correlates with inferior glioma outcome and RNF8 overexpression impedes GSC tumorigenicity. Last, we identify PLK1 inhibitor that mimics RNF8 overexpression using a chemical biology approach, and demonstrate a PLK1/HSP90 inhibitor combination that synergistically reduces GSC proliferation and stemness. Thus, our study has unveiled a previously unrecognized CAMK2D-RNF8-MAD2 complex in regulating mitotic checkpoint with relevance to gliomas, which is therapeutically targetable.


Assuntos
Proteínas de Ciclo Celular , Glioma , Proteínas Mad2 , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glioma/genética , Glioma/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Fuso Acromático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Science ; 367(6473): 100-104, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31727855

RESUMO

Tubulins play crucial roles in cell division, intracellular traffic, and cell shape. Tubulin concentration is autoregulated by feedback control of messenger RNA (mRNA) degradation via an unknown mechanism. We identified tetratricopeptide protein 5 (TTC5) as a tubulin-specific ribosome-associating factor that triggers cotranslational degradation of tubulin mRNAs in response to excess soluble tubulin. Structural analysis revealed that TTC5 binds near the ribosome exit tunnel and engages the amino terminus of nascent tubulins. TTC5 mutants incapable of ribosome or nascent tubulin interaction abolished tubulin autoregulation and showed chromosome segregation defects during mitosis. Our findings show how a subset of mRNAs can be targeted for coordinated degradation by a specificity factor that recognizes the nascent polypeptides they encode.


Assuntos
Retroalimentação Fisiológica , Estabilidade de RNA , RNA Mensageiro/química , Ribossomos/metabolismo , Fatores de Transcrição/fisiologia , Tubulina (Proteína)/metabolismo , Células HEK293 , Humanos , Mutação , Biossíntese de Proteínas , Fatores de Transcrição/genética , Tubulina (Proteína)/genética
12.
Elife ; 92020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32657267

RESUMO

Translation of aberrant mRNAs can cause ribosomes to stall, leading to collisions with trailing ribosomes. Collided ribosomes are specifically recognised by ZNF598 to initiate protein and mRNA quality control pathways. Here we found using quantitative proteomics of collided ribosomes that EDF1 is a ZNF598-independent sensor of ribosome collisions. EDF1 stabilises GIGYF2 at collisions to inhibit translation initiation in cis via 4EHP. The GIGYF2 axis acts independently of the ZNF598 axis, but each pathway's output is more pronounced without the other. We propose that the widely conserved and highly abundant EDF1 monitors the transcriptome for excessive ribosome density, then triggers a GIGYF2-mediated response to locally and temporarily reduce ribosome loading. Only when collisions persist is translation abandoned to initiate ZNF598-dependent quality control. This tiered response to ribosome collisions would allow cells to dynamically tune translation rates while ensuring fidelity of the resulting protein products.


Assuntos
Proteínas de Transporte/metabolismo , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Retroalimentação Fisiológica , Células HEK293 , Humanos , Proteômica , RNA Mensageiro/metabolismo
14.
ACS Chem Biol ; 13(11): 3059-3064, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30346689

RESUMO

Isozymes are enzymes with similar sequences that catalyze the same reaction in a given species. In Saccharomyces cerevisiae, most isozymes have major isoforms with high expression levels and minor isoforms with little expression under normal growth conditions. In a proteomic study aimed at identifying yeast protein regulated by rapamycin, we found an interesting phenomenon, that, for several metabolic enzymes, the major isozymes are downregulated while the minor isozymes are upregulated. Through enzymological and biochemical studies, we demonstrate that a rapamycin-upregulated enolase isozyme (ENO1) favors gluconeogenesis and a rapamycin-upregulated alcohol dehydrogenase isozyme (ALD4) promotes the reduction of NAD+ to NADH (instead of NADP+ to NADPH). Gene deletion study in yeast showed that the ENO1 and ALD4 are important for yeast survival under less-favorable growth conditions. Therefore, our study highlights the different metabolic needs of cells under different conditions and how nature chooses different isozymes to fit the metabolic needs.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Sirolimo/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Isoenzimas/metabolismo , NAD/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
ChemSusChem ; 5(4): 625-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22378645

RESUMO

AHA Erlebnis: CaC(2), used to produce acetylene until several decades ago, is re-emerging as a cheap, sustainable resource synthesized from coal and lignocellulosic biomass. We report efficient catalytic protocols for the synthesis of functional acetylene derivatives from CaC(2) through aldehyde, alkyne, and amine (AAA) as well as alkyne, haloalkane, and amine (AHA) couplings, and in addition demonstrate its use in click and Sonogashira chemistry, showing that calcium carbide is a sustainable and cost-efficient carbon source.


Assuntos
Acetileno/análogos & derivados , Acetileno/síntese química , Técnicas de Química Sintética/métodos , Acetileno/química , Ciclização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa