Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396404

RESUMO

Alzheimer's disease (AD) and vascular dementia (VaD) are the two most common forms of dementia. However, their neuropsychological and pathological features often overlap, making it difficult to distinguish between AD and VaD. In addition to clinical consultation and laboratory examinations, clinical dementia diagnosis in Taiwan will also include Tc-99m-ECD SPECT imaging examination. Through machine learning and deep learning technology, we explored the feasibility of using the above clinical practice data to distinguish AD and VaD. We used the physiological data (33 features) and Tc-99m-ECD SPECT images of 112 AD patients and 85 VaD patients in the Taiwanese Nuclear Medicine Brain Image Database to train the classification model. The results, after filtering by the number of SVM RFE 5-fold features, show that the average accuracy of physiological data in distinguishing AD/VaD is 81.22% and the AUC is 0.836; the average accuracy of training images using the Inception V3 model is 85% and the AUC is 0.95. Finally, Grad-CAM heatmap was used to visualize the areas of concern of the model and compared with the SPM analysis method to further understand the differences. This research method can quickly use machine learning and deep learning models to automatically extract image features based on a small amount of general clinical data to objectively distinguish AD and VaD.

2.
Ann Nucl Med ; 35(8): 889-899, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34076857

RESUMO

OBJECTIVE: To develop a practical method to rapidly utilize a deep learning model to automatically extract image features based on a small number of SPECT brain perfusion images in general clinics to objectively evaluate Alzheimer's disease (AD). METHODS: For the properties of low cost and convenient access in general clinics, Tc-99-ECD SPECT imaging data in brain perfusion detection was used in this study for AD detection. Two-stage transfer learning based on the Inception v3 network model was performed using the ImageNet dataset and ADNI database. To improve training accuracy, the three-dimensional image was reorganized into three sets of two-dimensional images for data augmentation and ensemble learning. The effect of pre-training parameters for Tc-99m-ECD SPECT image to distinguish AD from normal cognition (NC) was investigated, as well as the effect of the sample size of F-18-FDG PET images used in pre-training. The same model was also fine-tuned for the prediction of the MMSE score from the Tc-99m-ECD SPECT image. RESULTS: The AUC values of w/wo pre-training parameters for Tc-99m-ECD SPECT image to distinguish AD from NC were 0.86 and 0.90. The sensitivity, specificity, precision, accuracy, and F1 score were 100%, 75%, 76%, 86%, and 86%, respectively for the training model with 1000 cases of F-18-FDG PET image for pre-training. The AUC values for various sample sizes of the training dataset (100, 200, 400, 800, 1000 cases) for pre-training were 0.86, 0.91, 0.95, 0.97, and 0.97. Regardless of the pre-training condition ECD dataset used, the AUC value was greater than 0.85. Finally, predicting cognitive scores and MMSE scores correlated (R2 = 0.7072). CONCLUSIONS: With the ADNI pre-trained model, the sensitivity and accuracy of the proposed deep learning model using SPECT ECD perfusion images to differentiate AD from NC were increased by approximately 30% and 10%, respectively. Our study indicated that the model trained on PET FDG metabolic imaging for the same disease could be transferred to a small sample of SPECT cerebral perfusion images. This model will contribute to the practicality of SPECT cerebral perfusion images using deep learning technology to objectively recognize AD.


Assuntos
Doença de Alzheimer , Fluordesoxiglucose F18 , Encéfalo , Cisteína/análogos & derivados , Humanos , Masculino , Compostos de Organotecnécio , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único
3.
Diagnostics (Basel) ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34829438

RESUMO

The correct differential diagnosis of dementia has an important impact on patient treatment and follow-up care strategies. Tc-99m-ECD SPECT imaging, which is low cost and accessible in general clinics, is used to identify the two common types of dementia, Alzheimer's disease (AD) and Lewy body dementia (LBD). Two-stage transfer learning technology and reducing model complexity based on the ResNet-50 model were performed using the ImageNet data set and ADNI database. To improve training accuracy, the three-dimensional image was reorganized into three sets of two-dimensional images for data augmentation and ensemble learning, then the performance of various deep learning models for Tc-99m-ECD SPECT images to distinguish AD/normal cognition (NC), LBD/NC, and AD/LBD were investigated. In the AD/NC, LBD/NC, and AD/LBD tasks, the AUC values were around 0.94, 0.95, and 0.74, regardless of training models, with an accuracy of 90%, 87%, and 71%, and F1 scores of 89%, 86%, and 76% in the best cases. The use of transfer learning and a modified model resulted in better prediction results, increasing the accuracy by 32% for AD/NC. The proposed method is practical and could rapidly utilize a deep learning model to automatically extract image features based on a small number of SPECT brain perfusion images in general clinics to objectively distinguish AD and LBD.

4.
Oncol Rep ; 37(3): 1611-1618, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28184928

RESUMO

Hepatocellular carcinoma (HCC) accounts for approximately 90% of all cases of primary liver cancer, and the majority of patients with HCC are deprived of effective curative methods. Osthole is a Chinese herbal medicine which has been reported to possess various pharmacological functions, including hepatocellular protection. In the present study, we investigated the anticancer activity of osthole using HCC cell lines. We found that osthole inhibited HCC cell proliferation, induced cell cycle arrest, triggered DNA damage and suppressed migration in HCC cell lines. Furthermore, we demonstrated that osthole not only contributed to cell cycle G2/M phase arrest via downregulation of Cdc2 and cyclin B1 levels, but also induced DNA damage via an increase in ERCC1 expression. In addition, osthole inhibited the migration of HCC cell lines by significantly downregulating MMP-2 and MMP-9 levels. Finally, we demonstrated that osthole inhibited epithelial-mesenchymal transition (EMT) via increasing the expression of epithelial biomarkers E-cadherin and ß-catenin, and significantly decreasing mesenchymal N-cadherin and vimentin protein expression. These results suggest that osthole may have potential chemotherapeutic activity against HCC.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Transformação Celular Neoplásica/efeitos dos fármacos , Cumarínicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Cicatrização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa