Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 39-43, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38133832

RESUMO

A novel zinc phosphate derivative of Sr2Be2B2O7 (SBBO), K(NH4)Zn2(PO4)2 (KNZP), featuring [Zn2P2O8]∞2- double layers akin to the [Be2B2O7]∞4- layers in SBBO, was successfully synthesized via a moderate hydrothermal method. Through the substitution of BeO4 and BO3 with ZnO4 and PO4, the issue of toxicity has been effectively resolved, while the enhanced interlayer interactions facilitated by covalent and hydrogen bonding in KNZP overcome the inherent structural instability. Notably, KNZP exhibits a wide transparent window and a moderate second-harmonic generation (SHG) intensity, reaching 0.7 times that of KH2PO4 (KDP), rendering it type-I phase-matchable, indicating that it is a promising UV nonlinear optical (NLO) material.

2.
Inorg Chem ; 63(23): 10854-10859, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38781121

RESUMO

The arrangement of functional groups exerts a crucial role in determining the characteristics of compounds. In this study, we synthesized two novel short-wave ultraviolet (UV) nonlinear optical (NLO) crystals: KBe2(SeO3)2(OH)·H2O and K2Be(SeO3)2. Interestingly, the two compounds show the same SeO3 triangular pyramids and K-O polyhedra. However, the two compounds exhibit distinct beryllium-oxygen anion groups: BeO3(OH) for KBe2(SeO3)2(OH)·H2O and BeO4 for K2Be(SeO3)2. This results in the SeO3 groups within the structure having different orientations, ultimately leading to the two compounds exhibiting completely different optical properties. KBe2(SeO3)2(OH)·H2O displays a large second harmonic generation (SHG) effect equivalent to 2× KH2PO4 (KDP), coupled with a large birefringence of 0.078 at 546 nm. In contrast, the SHG effect and birefringence of K2Be(SeO3)2 are only 0.33× that of KDP and 0.024 at 546 nm, respectively. Structural analyses and theoretical calculations indicate that these pronounced differences in optical properties stem from variations in the arrangement of the SeO3 functional groups. This study not only sheds light on the correlation between crystal structure and optical behavior but also presents a hopeful avenue for the advancement of materials in the short-wave UV spectrum.

3.
Inorg Chem ; 63(18): 8013-8017, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38652668

RESUMO

Three new homochiral metal bromides, namely, (l-Htp)2Cu2Br4 (1), (l-Htp)(l-tp)CdBr3 (2), and (l-tp)2ZnBr2 (3), were prepared using l-thioproline as the chiral template. These compounds feature dimeric, chainlike, and monomeric structures. Their second-harmonic-generation (SHG) efficiencies are 0.1, 0.3, and 2.0 times that of KH2PO4, respectively. Density functional theory calculations were performed to reveal the origin of the SHG response of compound 3.

4.
Inorg Chem ; 63(19): 8521-8525, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38691447

RESUMO

A new open-framework tin(II) sulfate, formulated as C4H12N2·Sn(SO4)2·H2O, was prepared under the structure-directing effect of piperazine. This compound features a 3D structure with 16-ring channels. Under ultraviolet light irradiation, it emits bright yellow luminescence with a near-unity photoluminescence quantum yield. Theoretical calculations were carried out to understand the luminescence mechanism.

5.
Angew Chem Int Ed Engl ; 63(11): e202318976, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258950

RESUMO

Natural minerals, with their adaptable framework structures exemplified by perovskite and lyonsite, have sparked substantial interest as potential templates for the design of advanced functional solid-state materials. Nonetheless, the quest for new materials with desired properties remains a substantial challenge, primarily due to the scarcity of effective and practical synthetic approaches. In this study, we have harnessed a synergistic approach that seamlessly integrates first-principles high-throughput screening and crystal engineering to reinvigorate the often-overlooked fresnoite mineral, Ba2 TiOSi2 O7 . This innovative strategy has culminated in the successful synthesis of two superior inorganic UV nonlinear optical materials, namely Rb2 TeOP2 O7 and Rb2 SbFP2 O7 . Notably, Rb2 SbFP2 O7 demonstrates a comprehensive enhancement in nonlinear optical performance, featuring a shortened UV absorption edge (260 nm) and a more robust second-harmonic generation response (5.1×KDP). Particularly striking is its significantly increased birefringence (0.15@546 nm), which is approximately 30 times higher than the prototype Ba2 TiOSi2 O7 (0.005@546 nm). Our research has not only revitalized the potential of the fresnoite mineral for the development of new high-performance UV nonlinear optical materials but has also provided a clearly defined roadmap for the efficient exploration of novel structure-driven functional materials with targeted properties.

6.
Angew Chem Int Ed Engl ; : e202409093, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850113

RESUMO

This study pioneers a novel strategy for synthesizing solar-blind ultraviolet (UV) nonlinear optical (NLO) crystals through functional groups sequential construction, effectively addressing the inherent trade-offs among broad transmittance, enhanced second-harmonic generation (SHG), and optimal birefringence. We have developed two innovative van der Waals layered germanous phosphites: GeHPO3, the first Ge(II)-based oxide NLO crystal which exhibits a black phosphorus-like structure, and K(GeHPO3)2Br, distinguished by its exceptional birefringence and graphene-like structure. Significantly, GeHPO3 exhibits a remarkable array of NLO properties, including the highest SHG coefficient recorded among all NLO crystals for phase-matching and generating 266 nm coherent light via quadruple frequency conversion. It delivers a potent SHG intensity, surpassing KH2PO4 (KDP) by 10.3 times at 1064 nm and ß-BaB2O4 by 1.3 times at 532 nm, complemented by a distinct UV absorption edge at 211 nm and moderate birefringence of 0.062 at 546 nm. Comprehensive theoretical analysis links these exceptional characteristics to the unique NLO-active GeO34- units and the distinctive, highly ordered layered structures. Our findings deliver essential experimental insights into the development of Ge(II)-based optoelectronic materials and present a strategic blueprint for engineering structure-driven functional materials with customized properties.

7.
Angew Chem Int Ed Engl ; 63(6): e202318385, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38126929

RESUMO

Homochiral halide perovskites have gained increasing attention because of their fascinating optoelectronic properties and prospective applications in laser technologies. However, the limited choice of chiral organic templates severely restricts their structural diversity and second-harmonic generation (SHG) effects. Here, we present an in situ chiral template approach for the synthesis of one-dimensional (1D) homochiral lead iodides. A chiral imine (L-ipp) template was generated in situ by reacting L-proline (L-pro) and acetone under ambient conditions. Notably, L-ipp can cooperate with L-pro to direct the formation of a homochiral lead iodide with dual chiral templates, which is unprecedented in crystalline metal halides. The homochiral lead iodide containing both L-ipp and L-pro shows a strong SHG response of 8.0 times that of KH2 PO4 (8.0×KDP). The SHG efficiency is one of the largest values reported to date for any homochiral lead halides under 1064 nm laser irradiation. A comparative study shows that homochiral 1D lead iodides containing either L-ipp or L-pro exhibit relatively weak SHG responses (≤1.0×KDP). This work demonstrates the advantage of using two different chiral templates over a single chiral template in enhancing the SHG responses of halide materials.

8.
Angew Chem Int Ed Engl ; 63(15): e202400760, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38348737

RESUMO

Achieving tunable emissions spanning the spectrum, from blue to near-infrared (NIR) light, within a single component is a formidable challenge with significant implication, particularly in tailoring multicolor luminescence for anti-counterfeiting purposes. In this study, we demonstrate a broad spectrum of emissions, covering blue to red and extending into NIR light in [BPy]2CdX4 : xSb3+ (BPy=Butylpyridinium; X=Cl, Br; x=0 to 0.08) through precise multisite structural fine-tuning. Notably, the multicolor emissions from [BPy]2CdBr4 : Sb3+ manifest a distinctive pattern, transitioning from blue to yellow in tandem with the host [BPy]2CdBr4 and further extending from yellow to NIR with its homologous [BPy]2CdCl4 : Sb3+, resulting in the simultaneous presence of intersecting and independent emission colors. Detailed modulation of chemical composition enables partial luminescence switching, facilitating the creation of diverse patterns with multicolor luminescence by employing [BPy]2CdX4 : xSb3+ as phosphors. This study for the first time successfully implements several groups of tunable emission colors in a single matrix via multisite fine-tuning. Such an effective strategy not only develops the specific relationships between tunable emissions and adjustable compositions, but also introduces a cost-effective and straightforward approach to achieving unique, high-level, plentiful-color and multiple-information-storage labels for advanced anti-counterfeiting applications.

9.
Small ; 19(39): e2302797, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37246267

RESUMO

Oxides are emerging candidates for mid-infrared (mid-IR) nonlinear optical (NLO) materials. However, their intrinsically weak second harmonic generation (SHG) effects hinder their further development. A major design challenge is to increase the nonlinear coefficient while maintaining the broad mid-IR transmission and high laser-induced damage threshold (LIDT) of the oxides. In this study, it is reported on a polar NLO tellurite, Cd2 Nb2 Te4 O15 (CNTO), featuring a pseudo-Aurivillius-type perovskite layered structure composed of three types of NLO active groups, including CdO6 octahedra, NbO6 octahedra, and TeO4 seesaws. The uniform orientation of the distorted units induces a giant SHG response that is ≈31 times larger than that of KH2 PO4 , the largest value among all reported metal tellurites. Additionally, CNTO exhibits a large band gap (3.75 eV), a wide optical transparency window (0.33-14.5 µm), superior birefringence (0.12@ 546 nm), high LIDT (23 × AgGaS2 ), and strong acid and alkali resistance, indicating its potential as a promising mid-IR NLO material.

10.
Inorg Chem ; 62(12): 4752-4756, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36912489

RESUMO

Two novel mixed-alkali-metal selenate nonlinear-optical (NLO) crystals, Na3Li(H2O)3(SeO4)2·3H2O (I) and CsLi3(H2O)(SeO4)2 (II), have been successfully synthesized by an aqueous solution evaporation method. Both compounds feature the unique layers constructed of the same functional moieties including SeO4 and LiO4 tetrahedra: [Li(H2O)3(SeO4)2·3H2O]∞3- layers in I and [Li3(H2O)(SeO4)2]∞- layers in II. The titled compounds display wide optical band gaps of 5.62 and 5.66 eV, respectively, according to the UV-vis spectra. Interestingly, they exhibit significantly different second-order nonlinear coefficients (0.34 × KDP and 0.70 × KDP, respectively). Detailed dipole moment calculations manifest that the large disparity can be attributed to the difference in the dipole moment of the crystallographically independent SeO4 and LiO4 groups. This work confirms that alkali-metal selenate system is an excellent candidate for short-wave ultraviolet NLO materials.

11.
Inorg Chem ; 62(22): 8500-8504, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37222550

RESUMO

Two metal sulfate-oxalates, (Hgly)2·Zn(SO4)(C2O4) (1) and Hgly·In(SO4)(C2O4)(gly) (2), were prepared under solvent-free conditions, where gly = glycine. They have similar layered structures despite the fact that aliovalent metal ions are used as structural nodes. Notably, glycine molecules play dual roles as a protonated cation and a zwitterionic ligand in compound 2. The two compounds display moderate second-harmonic-generation (SHG) responses, confirming their noncentrosymmetric structures. Theoretical calculations were performed to reveal the origin of their SHG responses.

12.
Inorg Chem ; 62(16): 6202-6206, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027523

RESUMO

The combination of π-conjugated oxalate anion with sulfate group has been explored in the solvent-free synthesis of two new magnesium sulfate oxalates. One of them has a layered structure crystallized in the noncentrosymmetric space group Ia, while the other has a chainlike structure crystallized in the centrosymmetric space group P21/c. The noncentrosymmetric solid has a wide optical bandgap and exhibits a moderate second-harmonic-generation response. Density functional theory calculations were carried out to disclose the origin of its second-order nonlinear-optical response.

13.
Inorg Chem ; 62(46): 19135-19141, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37947127

RESUMO

Herein, two new Sb3+-based phosphites, Sb2O2(HPO3) (I) and Sb2O(HPO3)2 (II), were successfully obtained by ingeniously combining Sb3+-based polyhedra containing stereochemically active lone pair (SCALP) and HPO3 polar groups. Both reported compounds exhibit unique 2D van der Waals layered structures, [Sb4O4(HPO3)2]∞ and [Sb2O(HPO3)2]∞, respectively, which favors compounds with large optical anisotropy. Interestingly, the different curvatures of the two layers resulted in the two title compounds showing significantly different birefringences (0.079@546 and 0.046@546 nm, respectively). Both compounds endow wide optical band gaps (4.32 and 4.54 eV, respectively), which indicates their potential as promising ultraviolet (UV) birefringent crystals. The synthesis of the two title compounds enriched Sb3+-based phosphites in the UV region and provided guidance for the subsequent synthesis of superior optical materials.

14.
Inorg Chem ; 62(41): 16673-16676, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37781989

RESUMO

Three homochiral organic-inorganic hybrid antimony halides, namely, (L-Hhis)2Sb2Cl8 (1), L-H2his·SbBr5·H2O (2), and (L-H2his)2·Sb3I13·4H2O (3), were prepared to investigate the structure-directing roles of l-histidine (l-his). These compounds feature dimeric, chainlike, and trimeric structures with different optical bandgaps. They display second-harmonic-generation (SHG) responses of 0.1, 2.6, and 0.05 times that of KH2PO4, respectively. Theoretical calculations for compound 2 were carried out to get insights into its structure-property relationship.

15.
Inorg Chem ; 62(11): 4716-4726, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36888968

RESUMO

Crystalline borates are an important class of functional materials with wide applications in photocatalysis and laser technologies. Obtaining their band gap values in a timely and precise manner is a great challenge in material design due to the issues of computational accuracy and cost of first-principles methods. Although machine learning (ML) techniques have shown great successes in predicting the versatile properties of materials, their practicality is often limited by the data set quality. Here, by using a combination of natural language processing searches and domain knowledge, we built an experimental database of inorganic borates, including their chemical compositions, band gaps, and crystal structures. We performed graph network deep learning to predict the band gaps of borates with accuracy, and the results agreed favorably with experimental measurements from the visible-light to the deep-ultraviolet (DUV) region. For a realistic screening problem, our ML model could correctly identify most of the investigated DUV borates. Furthermore, the extrapolative ability of the model was validated against our newly synthesized borate crystal Ag3B6O10NO3, supplemented by the discussion of an ML-based material design for structural analogues. The applications and interpretability of the ML model were also evaluated extensively. Finally, we implemented a web-based application, which could be utilized conveniently in material engineering for the desired band gap. The philosophy behind this study is to use cost-effective data mining techniques to build high-quality ML models, which can provide useful clues for further material design.

16.
Inorg Chem ; 61(9): 4184-4192, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35195987

RESUMO

A novel alkali metal lead halide nitrate, Cs2Pb(NO3)2Br2, has been successfully synthesized via a hydrothermal method. Interestingly, the title compound features a distinctive Ruddlesden-Popper perovskite-like layered structure, which induces the outstanding multifunctional optical properties, including a large birefringence (0.147@546 nm) and broad light-orange emission. Detailed structural analysis and theoretical calculations revealed that the large birefringence originates from the p-π interaction between the Pb2+ cations and NO3 groups and that the excellent luminescence properties derive from the distortion of PbO4Br4 polyhedra. This work not only enriches the variant structure types of layered perovskites but also guides the further exploration of all-inorganic multifunctional optical materials.

17.
Inorg Chem ; 61(50): 20243-20247, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36475675

RESUMO

An organic carboxylate ligand was employed in the synthesis of a nonhygroscopic nitrate-based nonlinear-optical (NLO) material. The hybrid-framework solid has unusual three-dimensional inorganic and organic connections with high thermal stability. Sharing similar structural features with the well-known NLO material KH2PO4 (KDP), this compound shows an enhanced second-harmonic-generation (SHG) response of about 1.6 times that of KDP. Theoretical calculations were carried out to reveal the origin of its SHG response.

18.
Inorg Chem ; 61(43): 16997-17001, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36264600

RESUMO

A novel antimony(III)-based phosphite, SbHPO3F, featuring a unique two-dimensional (2D) van der Waals layered structure, has been successfully designed and synthesized via the simultaneous employment of optically active moieties including SbO3F seesaw and tetrahedral HPO3 groups. Its optimized layered arrangement formed by the alternating connection of 4-membered rings (4-MRs) and 8-MRs endows the title compound with desirable optical properties including a large birefringence and short ultraviolet (UV) cutoff edge, implying that it is a potential UV birefringent material.

19.
Inorg Chem ; 61(37): 14523-14527, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36069704

RESUMO

A novel organic-inorganic hybrid guanidine fluoromolybdate, [C(NH2)3]2MoO2F4·H2O, was successfully synthesized via our proposed cation-anion synergetic interaction strategy. The title compound features a unique Chinese-knot structure constructed by hydrogen-bonding interactions, which induces an all-around improvement of the optical band gap, second-harmonic-generation effect, and phase-matchable ability compared with the reported fluoromolybdates, demonstrating that it is a promising UV nonlinear-optical material.

20.
Inorg Chem ; 61(11): 4752-4759, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35263085

RESUMO

Organic-inorganic hybrid metal halides (OIMHs) exhibiting white-light emission are a splendid class of emitters and are regarded as desired phosphors for solid-state lighting applications. Here we report a single-component white-light-emitting hybrid metal halide, namely, [C6H7ClN]CdCl3 (C6H7ClN = 4-(chloromethyl)pyridinium), which features a corrugated 1D anionic double chain composed of edge-shared CdCl6 octahedrons and exhibits broadband white-light emission with a photoluminescence quantum yield of 12.3% under 365 nm UV light irradiation. Density functional theory calculations and temperature-dependent emission spectral analysis unveil that the broadband emission of [C6H7ClN]CdCl3 is ascribed to self-trapped excitons. Moreover, a single-component white-light-emitting diode device with a correlated color temperature of 5214 K and color rendering index of 83.7 can be fabricated via coating [C6H7ClN]CdCl3 on a 365 nm UV light-emitting diode chip. Such a promising luminescent material provides guidance for the design and synthesis of OIMHs with unique structures and desired properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa