Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 13(3)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803454

RESUMO

Enteric viruses, such as poliovirus, are a leading cause of gastroenteritis, which causes 2-3 million deaths annually. Environmental surveillance of wastewater supplements clinical surveillance for monitoring enteric virus circulation. However, while many environmental surveillance methods require liquid samples, some at-risk locations utilize pit latrines with waste characterized by high solids content. This study's objective was to develop and evaluate enteric virus concentration protocols for high solids content samples. Two existing protocols were modified and tested using poliovirus type 1 (PV1) seeded into primary sludge. Method 1 (M1) utilized acid adsorption, followed by 2 or 3 elutions (glycine/sodium chloride and/or threonine/sodium chloride), and skimmed milk flocculation. Method 2 (M2) began with centrifugation. The liquid fraction was filtered through a ViroCap filter and eluted (beef extract/glycine). The solid fraction was eluted (beef extract/disodium hydrogen phosphate/citric acid) and concentrated by skimmed milk flocculation. Recovery was enumerated by plaque assay. M1 yielded higher PV1 recovery than M2, though this result was not statistically significant (26.1% and 15.9%, respectively). M1 was further optimized, resulting in significantly greater PV1 recovery when compared to the original protocol (p < 0.05). This method can be used to improve understanding of enteric virus presence in communities without liquid waste streams.


Assuntos
Monitoramento Ambiental/métodos , Poliovirus/isolamento & purificação , Esgotos/virologia , Resíduos Sólidos/análise , Carga Viral/métodos , Infecções por Enterovirus/prevenção & controle , Floculação , Gastroenterite/prevenção & controle , Gastroenterite/virologia , Humanos , Poliomielite/prevenção & controle , Ensaio de Placa Viral/métodos , Microbiologia da Água
2.
Environ Sci Technol Lett ; 8(5): 425-430, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566360

RESUMO

Ultraviolet (UV) devices emitting UVC irradiation (200-280 nm) have proven to be effective for virus disinfection, especially on surfaces and in air, due to their rapid effectiveness and limited to no material corrosion. Numerous studies of UV-induced inactivation focused on nonenveloped viruses. Little is known about UVC action on enveloped viruses across UVC wavelengths. In this study, we determined inactivation efficiencies of two coronaviruses (ssRNA) and an enveloped dsRNA bacteriophage surrogate in buffered aqueous solution (pH 7.4) using five commonly available UVC devices that uniquely emit light at different wavelengths spanning 222 nm emitting krypton chloride (KrCl*) excimers to 282 nm emitting UVC LEDs. Our results show that enveloped viruses can be effectively inactivated using UVC devices, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate) for all three enveloped viruses. The coronaviruses exhibited similar sensitivities to UV irradiation across the UVC range, whereas the bacteriophage surrogate was much more resistant and exhibited significantly higher sensitivity to the Far UVC (<230 nm) irradiation. This study provides necessary information and guidance for using UVC devices for enveloped virus disinfection, which may help control virus transmission in public spaces during the ongoing COVID-19 pandemic and beyond.

3.
Food Environ Virol ; 10(1): 72-82, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674934

RESUMO

Environmental surveillance of poliovirus (PV) plays an important role in the global program for eradication of wild PV. The bag-mediated filtration system (BMFS) was first developed in 2014 and enhances PV surveillance when compared to the two-phase grab method currently recommended by the World Health Organization (WHO). In this study, the BMFS design was improved and tested for its usability in wastewater and wastewater-impacted surface waters in Nairobi, Kenya. Modifications made to the BMFS included the size, color, and shape of the collection bags, the filter housing used, and the device used to elute the samples from the filters. The modified BMFS concentrated 3-10 L down to 10 mL, which resulted in an effective volume assayed (900-3000 mL) that was 6-20 times greater than the effective volume assayed for samples processed by the WHO algorithm (150 mL). The system developed allows for sampling and in-field virus concentration, followed by transportation of the filter for further analysis with simpler logistics than the current methods. This may ultimately reduce the likelihood of false-negative samples by increasing the effective volume assayed compared to samples processed by the WHO algorithm, making the BMFS a valuable sampling system for wastewater and wastewater-impacted surface waters.


Assuntos
Monitoramento Ambiental/métodos , Filtração/métodos , Poliomielite/virologia , Poliovirus/crescimento & desenvolvimento , Águas Residuárias/virologia , Poluição da Água , Humanos , Quênia , Esgotos/virologia , Água , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa