Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688765

RESUMO

While body decompensation is mainly facilitated by bacteria, investigating the antimicrobial properties of body preservation methods is still a neglected research area. We performed microbiological sampling for potentially pathogenic bacteria species of brain, lung, liver, colon, and subcutis samples obtained from bodies perfused with embalming solutions of variable composition with emphasis on variable formaldehyde concentrations. We, thereby, identified spore-forming aerobic and anaerobic bacteria mainly in the samples obtained from the colon of ethanol- and lower-concentrated formaldehyde formulation embalmed bodies. Moreover, we could identify Enterococcus species in bodies preserved with the latter method. Tissue samples of the subcutis remained sterile. Long-term incubation of special mycobacteria growth indicator tubes revealed no growth of mycobacteria in all 60 samples analyzed. Overall, we show survival of bacterial genera known to be especially environmentally resistant but also include potentially pathogenic members. Knowledge of bactericidal capacities of embalming solutions are therefore critical to assess risk and apply appropriate disinfection routines while working with human bodies. Moreover, new formulations to reduce potentially toxic substances for embalming needs to be evaluated regarding their bactericidal capacities.


Assuntos
Anti-Infecciosos , Embalsamamento , Humanos , Embalsamamento/métodos , Cadáver , Formaldeído , Bactérias , Antibacterianos
2.
J Allergy Clin Immunol ; 147(1): 335-348.e11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407834

RESUMO

BACKGROUND: The cross-talk between the host and its microbiota plays a key role in the promotion of health. The production of metabolites such as polyamines by intestinal-resident bacteria is part of this symbiosis shaping host immunity. The polyamines putrescine, spermine, and spermidine are abundant within the gastrointestinal tract and might substantially contribute to gut immunity. OBJECTIVE: We aimed to characterize the polyamine spermidine as a modulator of T-cell differentiation and function. METHODS: Naive T cells were isolated from wild-type mice or cord blood from healthy donors and submitted to polarizing cytokines, with and without spermidine treatment, to evaluate CD4+ T-cell differentiation in vitro. Moreover, mice were subjected to oral supplementation of spermidine, or its precursor l-arginine, to assess the frequency and total numbers of regulatory T (Treg) cells in vivo. RESULTS: Spermidine modulates CD4+ T-cell differentiation in vitro, preferentially committing naive T cells to a regulatory phenotype. After spermidine treatment, activated T cells lacking the autophagy gene Atg5 fail to upregulate Foxp3 to the same extent as wild-type cells. These results indicate that spermidine's polarizing effect requires an intact autophagic machinery. Furthermore, dietary supplementation with spermidine promotes homeostatic differentiation of Treg cells within the gut and reduces pathology in a model of T-cell transfer-induced colitis. CONCLUSION: Altogether, our results highlight the beneficial effects of spermidine, or l-arginine, on gut immunity by promoting Treg cell development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Colite/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Espermidina/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
3.
PLoS Pathog ; 9(9): e1003648, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086137

RESUMO

Plasmacytoid dendritic cells (pDCs) express the I-type lectin receptor Siglec-H and produce interferon α (IFNα), a critical anti-viral cytokine during the acute phase of murine cytomegalovirus (MCMV) infection. The ligands and biological functions of Siglec-H still remain incompletely defined in vivo. Thus, we generated a novel bacterial artificial chromosome (BAC)-transgenic "pDCre" mouse which expresses Cre recombinase under the control of the Siglec-H promoter. By crossing these mice with a Rosa26 reporter strain, a representative fraction of Siglec-H⁺ pDCs is terminally labeled with red fluorescent protein (RFP). Interestingly, systemic MCMV infection of these mice causes the downregulation of Siglec-H surface expression. This decline occurs in a TLR9- and MyD88-dependent manner. To elucidate the functional role of Siglec-H during MCMV infection, we utilized a novel Siglec-H deficient mouse strain. In the absence of Siglec-H, the low infection rate of pDCs with MCMV remained unchanged, and pDC activation was still intact. Strikingly, Siglec-H deficiency induced a significant increase in serum IFNα levels following systemic MCMV infection. Although Siglec-H modulates anti-viral IFNα production, the control of viral replication was unchanged in vivo. The novel mouse models will be valuable to shed further light on pDC biology in future studies.


Assuntos
Células Dendríticas/imunologia , Infecções por Herpesviridae/imunologia , Interferon-alfa/imunologia , Lectinas/imunologia , Modelos Imunológicos , Muromegalovirus/fisiologia , Plasmócitos/imunologia , Receptores de Superfície Celular/imunologia , Animais , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/patologia , Interferon-alfa/genética , Interferon-alfa/metabolismo , Lectinas/genética , Lectinas/metabolismo , Camundongos , Camundongos Knockout , Plasmócitos/metabolismo , Plasmócitos/patologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Replicação Viral/genética , Replicação Viral/imunologia
4.
Virol J ; 11: 145, 2014 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-25108672

RESUMO

BACKGROUND: Cytomegalovirus establishes lifelong persistency in the host and leads to life threatening situations in immunocompromised patients. FoxP3+ T regulatory cells (Tregs) critically control and suppress innate and adaptive immune responses. However, their specific role during MCMV infection, especially pertaining to their interaction with NK cells, remains incompletely defined. METHODS: To understand the contribution of Tregs on NK cell function during acute MCMV infection, we infected Treg depleted and undepleted DEREG mice with WT MCMV and examined Treg and NK cell frequency, number, activation and effector function in vivo. RESULTS: Our results reveal an increased frequency of activated Tregs within the CD4+ T cell population shortly after MCMV infection. Specific depletion of Tregs in DEREG mice under homeostatic conditions leads to an increase in NK cell number as well as to a higher activation status of these cells as compared with non-depleted controls. Interestingly, upon infection this effect on NK cells is completely neutralized in terms of cell frequency, CD69 expression and functionality with respect to IFN-γ production. Furthermore, composition of the NK cell population with regard to Ly49H expression remains unchanged. In contrast, absence of Tregs still boosts the general T cell response upon infection to a level comparable to the enhanced activation seen in uninfected mice. CD4+ T cells especially benefit from Treg depletion exhibiting a two-fold increase of CD69+ cells 40 h and IFN-γ+ cells 7 days p.i. while, MCMV infection per se induces robust CD8+ T cell activation which is also further augmented in Treg-depleted mice. Nevertheless, the viral burden in the liver and spleen remain unaltered upon Treg ablation during the course of infection. CONCLUSIONS: Thus, MCMV infection abolishes Treg suppressing effects on NK cells whereas T cells benefit from their absence during acute infection. This study provides novel information in understanding the collaborative interaction between NK cells and Tregs during a viral infection and provides further knowledge that could be adopted in therapeutic setups to improve current treatment of organ transplant patients where modulation of Tregs is envisioned as a strategy to overcome transplant rejection.


Assuntos
Infecções por Herpesviridae/imunologia , Células Matadoras Naturais/imunologia , Muromegalovirus/imunologia , Linfócitos T Reguladores/imunologia , Imunidade Adaptativa , Animais , Fatores de Transcrição Forkhead/metabolismo , Infecções por Herpesviridae/virologia , Homeostase/imunologia , Interferon gama/biossíntese , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Depleção Linfocítica , Masculino , Camundongos , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Carga Viral
5.
Front Mol Biosci ; 11: 1395410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828394

RESUMO

External Quality Assessment schemes (EQAS) are mandatory to ensure quality standards in diagnostic methods and achieve laboratory accreditation. As host institution for two German culture-based bacteriology EQAS (RV-A and RV-B), we investigated the obtained data of 590 up to 720 surveys per year in RV-A and 2,151 up to 2,929 in RV-B from 2006 to 2023. As educational instruments, they function to review applied methodology and are valuable to check for systemic- or method-dependent failures in microbiology diagnostics or guidelines. Especially, containment of multi-resistant bacteria in times of rising antibiotic resistance is one major point to assure public health. The correct identification and reporting of these strains is therefore of high importance to achieve this goal. Moreover, correct antimicrobial susceptibility testing (AST) per se is important for selecting appropriate therapy, to restrict broad-spectrum antibiotics and minimize resistance development. The reports of participating laboratories displayed a high level of correct identification results in both schemes with mostly consistent failure rates around 2.2% (RV-A) and 3.9% (RV-B) on average. In contrast, results in AST revealed increasing failure rates upon modification of AST requirements concerning adherence to standards and subsequent bacterial species-specific evaluation. Stratification on these periods revealed in RV-A a moderate increase from 1.3% to 4.5%, while in RV-B failure rates reached 14% coming from 4.3% on average. Although not mandatory, subsequent AST evaluation and consistent reporting are areas of improvement to benefit public health.

6.
Nat Commun ; 13(1): 3998, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810180

RESUMO

Basic processes of the fatty acid metabolism have an important impact on the function of intestinal epithelial cells (IEC). However, while the role of cellular fatty acid oxidation is well appreciated, it is not clear how de novo fatty acid synthesis (FAS) influences the biology of IECs. We report here that interfering with de novo FAS by deletion of the enzyme Acetyl-CoA-Carboxylase (ACC)1 in IECs results in the loss of epithelial crypt structures and a specific decline in Lgr5+ intestinal epithelial stem cells (ISC). Mechanistically, ACC1-mediated de novo FAS supports the formation of intestinal organoids and the differentiation of complex crypt structures by sustaining the nuclear accumulation of PPARδ/ß-catenin in ISCs. The dependency of ISCs on cellular de novo FAS is tuned by the availability of environmental lipids, as an excess delivery of external fatty acids is sufficient to rescue the defect in crypt formation. Finally, inhibition of ACC1 reduces the formation of tumors in colitis-associated colon cancer, together highlighting the importance of cellular lipogenesis for sustaining ISC function and providing a potential perspective to colon cancer therapy.


Assuntos
Acetil-CoA Carboxilase , Lipogênese , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/metabolismo , Lipogênese/fisiologia , Células-Tronco/metabolismo
7.
J Mol Med (Berl) ; 99(6): 817-829, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33595670

RESUMO

The increasing prevalence of antimicrobial resistance in pathogens is a growing public health concern, with the potential to compromise the success of infectious disease treatments in the future. Particularly, the number of infections by macrolide antibiotics-resistant Streptococcus pneumoniae is increasing. We show here that Clarithromycin impairs both the frequencies and number of interleukin (IL)-17 producing T helper (Th) 17 cells within the lungs of mice infected with a macrolide-resistant S. pneumoniae serotype 15A strain. Subsequently, the tissue-resident memory CD4+ T cell (Trm) response to a consecutive S. pneumoniae infection was impaired. The number of lung resident IL-17+ CD69+ Trm was diminished upon Clarithromycin treatment during reinfection. Mechanistically, Clarithromycin attenuated phosphorylation of the p90-S6-kinase as part of the ERK pathway in Th17 cells. Moreover, a strong increase in the mitochondrial-mediated maximal respiratory capacity was observed, while mitochondrial protein translation and mTOR sisgnaling were unimpaired. Therefore, treatment with macrolide antibiotics may favor the spread of antimicrobial-resistant pathogens not only by applying a selection pressure but also by decreasing the natural T cell immune response. Clinical administration of macrolide antibiotics as standard therapy procedure during initial hospitalization should be reconsidered accordingly and possibly be withheld until microbial resistance is determined. KEY MESSAGES: • Macrolide-resistant S. pneumoniae infection undergoes immunomodulation by Clarithromycin • Clarithromycin treatment hinders Th17 and tissue-resident memory responses • Macrolide antibiotics impair Th17 differentiation in vitro by ERK-pathway inhibition.


Assuntos
Claritromicina/farmacologia , Memória Imunológica/efeitos dos fármacos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Claritromicina/uso terapêutico , Farmacorresistência Bacteriana , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Macrolídeos/farmacologia , Células T de Memória/efeitos dos fármacos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Células Th17/metabolismo
8.
Int J Pharm ; 584: 119434, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32439584

RESUMO

The aim of this study was to investigate the functionality of two disintegrants (crospovidone and croscarmellose sodium) in tablet formulations processed via roll compaction and subsequent tableting. The influence of different fillers and the effect of sodium lauryl sulfate on the disintegration process were studied using full factorial design. For a direct comparison of disintegrant functionality, the center point formulations were manufactured via direct compression. Tablet characteristics, such as tensile strength, solid fraction, disintegration time and mechanism, and dissolution profile were determined. The results allow the conclusion that the functionality of the disintegrants is impaired by dry granulation. Both the disintegration mechanism and the disintegration time were different when comparing tablets made after dry granulation and by direct compression. The effect was more pronounced on the functionality of crospovidone than on that of croscarmellose sodium. In addition, sodium lauryl sulfate showed a notable influence on all tablet properties due to its lubricating effect. The variation of the filler also had a remarkable effect on the tablet characteristics. The results link excipient functionality to drug product properties depending on the applied manufacturing process and could contribute to extend the Manufacturing Classification System to excipient characteristics.


Assuntos
Carboximetilcelulose Sódica/química , Excipientes/química , Povidona/química , Celulose/química , Composição de Medicamentos , Ibuprofeno/química , Manitol/química , Dodecilsulfato de Sódio/química , Solubilidade , Comprimidos , Resistência à Tração
9.
AAPS J ; 22(4): 78, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32458089

RESUMO

Entrectinib is a potent and selective tyrosine kinase inhibitor (TKI) of TRKA/B/C, ROS1, and ALK with both systemic and CNS activities, which has recently received FDA approval for ROS1 fusion-positive non-small cell lung cancer and NTRK fusion-positive solid tumors. This paper describes the application of a physiologically based biophamaceutics modeling (PBBM) during clinical development to understand the impact of food and gastric pH changes on absorption of this lipophilic, basic, molecule with reasonable permeability but strongly pH-dependent solubility. GastroPlus™ was used to develop a physiologically based pharmacokinetics (PBPK) model integrating in vitro and in silico data and dissolution studies and in silico modelling in DDDPlus™ were used to understand the role of self-buffering and acidulant on formulation performance. Models were verified by comparison of simulated pharmacokinetics for acidulant and non-acidulant containing formulations to clinical data from a food effect study and relative bioavailability studies with and without the gastric acid-reducing agent lansoprazole. A negligible food effect and minor pH-dependent drug-drug interaction for the market formulation were predicted based on biorelevant in vitro measurements, dissolution studies, and in silico modelling and were confirmed in clinical studies. These outcomes were explained as due to the acidulant counteracting entrectinib self-buffering and greatly reducing the effect of gastric pH changes. Finally, sensitivity analyses with the verified model were applied to support drug product quality. PBBM has great potential to streamline late-stage drug development and may have impact on regulatory questions.


Assuntos
Benzamidas/farmacocinética , Interações Alimento-Droga/fisiologia , Absorção Gástrica/fisiologia , Mucosa Gástrica/metabolismo , Indazóis/farmacocinética , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacocinética , Adulto , Benzamidas/metabolismo , Feminino , Alimentos , Absorção Gástrica/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Indazóis/metabolismo , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/metabolismo , Adulto Jovem
10.
Front Immunol ; 10: 466, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930901

RESUMO

Vesicular stomatitis virus (VSV) is an insect-transmitted rhabdovirus that is neurovirulent in mice. Upon peripheral VSV infection, CD169+ subcapsular sinus (SCS) macrophages capture VSV in the lymph, support viral replication, and prevent CNS neuroinvasion. To date, the precise mechanisms controlling VSV infection in SCS macrophages remain incompletely understood. Here, we show that Toll-like receptor-7 (TLR7), the main sensing receptor for VSV, is central in controlling lymph-borne VSV infection. Following VSV skin infection, TLR7-/- mice display significantly less VSV titers in the draining lymph nodes (dLN) and viral replication is attenuated in SCS macrophages. In contrast to effects of TLR7 in impeding VSV replication in the dLN, TLR7-/- mice present elevated viral load in the brain and spinal cord highlighting their susceptibility to VSV neuroinvasion. By generating novel TLR7 floxed mice, we interrogate the impact of cell-specific TLR7 function in anti-viral immunity after VSV skin infection. Our data suggests that TLR7 signaling in SCS macrophages supports VSV replication in these cells, increasing LN infection and may account for the delayed onset of VSV-induced neurovirulence observed in TLR7-/- mice. Overall, we identify TLR7 as a novel and essential host factor that critically controls anti-viral immunity to VSV. Furthermore, the novel mouse model generated in our study will be of valuable importance to shed light on cell-intrinsic TLR7 biology in future studies.


Assuntos
Macrófagos/imunologia , Glicoproteínas de Membrana/imunologia , Infecções por Rhabdoviridae/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Receptor 7 Toll-Like/imunologia , Vesiculovirus/fisiologia , Replicação Viral/imunologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Macrófagos/virologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/patologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Medula Espinal/imunologia , Medula Espinal/virologia , Receptor 7 Toll-Like/genética , Replicação Viral/genética
11.
AAPS J ; 19(3): 827-836, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28236228

RESUMO

The study aimed to characterise the mechanism of release and absorption of Basmisanil, a biopharmaceutics classification system (BCS) class 2 compound, from immediate-release formulations via mechanistic absorption modelling, dissolution testing, and Raman imaging. An oral absorption model was developed in GastroPlus® and verified with single-dose pharmacokinetic data in humans. The properties and drug release behaviour of different oral Basmisanil formulations were characterised via biorelevant dissolution and Raman imaging studies. Finally, an in vitro-in vivo correlation (IVIVC) model was developed using conventional and mechanistic deconvolution methods for comparison. The GastroPlus model accurately simulated oral Basmisanil exposure from tablets and granules formulations containing micronized drug. Absorption of oral doses below 200 mg was mostly dissolution rate-limited and thus particularly sensitive to formulation properties. Indeed, reduced exposure was observed for a 120-mg film-coated tablet and the slower dissolution rate measured in biorelevant media was attributed to differences in drug load. This hypothesis was confirmed when Raman imaging showed that the percolation threshold was exceeded in this formulation. This biorelevant dissolution method clearly differentiated between the formulations and was used to develop a robust IVIVC model. The study demonstrates the applicability and impact of mechanistic absorption modelling and biopharmaceutical in vitro tools for rational drug development.


Assuntos
Modelos Teóricos , Oxazóis/farmacocinética , Piridinas/farmacocinética , Administração Oral , Liberação Controlada de Fármacos , Humanos , Oxazóis/administração & dosagem , Piridinas/administração & dosagem , Solubilidade
12.
Clin Pharmacol Drug Dev ; 6(3): 266-279, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27545871

RESUMO

The anaplastic lymphoma kinase (ALK) inhibitor alectinib is an effective treatment for ALK-positive non-small-cell lung cancer. This bioequivalence study evaluated the in vivo performance of test 3 formulations with the reduced wetting agent sodium lauryl sulfate (SLS) content. This randomized, 4-period, 4-sequence, crossover study compared alectinib (600 mg) as 25%, 12.5%, and 3% SLS hard capsule formulations with the reference 50% SLS clinical formulation in healthy subjects under fasted conditions (n = 49), and following a high-fat meal (n = 48). Geometric mean ratios and 90% confidence intervals (CIs) for Cmax , AUC0-last , and AUC0-∞ of alectinib, its major active metabolite, M4, and alectinib plus M4 were determined for the test formulations versus the reference formulation. Bioequivalence was concluded if the 90%CIs were within the 80% to 125% boundaries. The 25% SLS formulation demonstrated bioequivalence to the reference 50% SLS formulation for Cmax , AUC0-last , and AUC0-∞ of alectinib, M4, and alectinib plus M4 under both fasted and fed conditions. Further reductions in SLS content (12.5% and 3% SLS) did not meet the bioequivalence criteria. Cross-group comparisons showed an approximately 3-fold positive food effect. Reducing SLS to 25% resulted in a formulation that is bioequivalent to the current 50% SLS formulation used in alectinib pivotal trials.


Assuntos
Carbazóis/farmacocinética , Piperidinas/farmacocinética , Dodecilsulfato de Sódio/farmacologia , Tensoativos/farmacologia , Adulto , Cápsulas , Carbazóis/administração & dosagem , Estudos Cross-Over , Dieta Hiperlipídica , Jejum , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Piperidinas/administração & dosagem , Equivalência Terapêutica , Adulto Jovem
13.
Cell Rep ; 17(4): 1113-1127, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760315

RESUMO

Cytomegalovirus (CMV) is an opportunistic virus severely infecting immunocompromised individuals. In mice, endosomal Toll-like receptor 9 (TLR9) and downstream myeloid differentiation factor 88 (MyD88) are central to activating innate immune responses against mouse CMV (MCMV). In this respect, the cell-specific contribution of these pathways in initiating anti-MCMV immunity remains unclear. Using transgenic mice, we demonstrate that TLR9/MyD88 signaling selectively in CD11c+ dendritic cells (DCs) strongly enhances MCMV clearance by boosting natural killer (NK) cell CD69 expression and IFN-γ production. In addition, we show that in the absence of plasmacytoid DCs (pDCs), conventional DCs (cDCs) promote robust NK cell effector function and MCMV clearance in a TLR9/MyD88-dependent manner. Simultaneously, cDC-derived IL-15 regulates NK cell degranulation by TLR9/MyD88-independent mechanisms. Overall, we compartmentalize the cellular contribution of TLR9 and MyD88 signaling in individual DC subsets and evaluate the mechanism by which cDCs control MCMV immunity.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/virologia , Células Dendríticas/metabolismo , Muromegalovirus/fisiologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Animais , Antivirais/farmacologia , Antígeno CD11c/metabolismo , Citotoxicidade Imunológica , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C
14.
Eur J Pharm Biopharm ; 58(2): 265-78, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15296954

RESUMO

Since its inception in 1995, the biopharmaceutical classification system (BCS) has become an increasingly important tool for regulation of drug products world-wide. Until now, application of the BCS has been partially hindered by the lack of a freely available and accurate database summarising solubility and permeability characteristics of drug substances. In this report, orally administered drugs on the Model list of Essential Medicines of the World Health Organization (WHO) are assigned BCS classifications on the basis of data available in the public domain. Of the 130 orally administered drugs on the WHO list, 61 could be classified with certainty. Twenty-one (84%) of these belong to class I (highly soluble, highly permeable), 10 (17%) to class II (poorly soluble, highly permeable), 24 (39%) to class III (highly soluble, poorly permeable) and 6 (10%) to class IV (poorly soluble, poorly permeable). A further 28 drugs could be provisionally assigned, while for 41 drugs insufficient or conflicting data precluded assignment to a specific BCS class. A total of 32 class I drugs (either certain or provisional classification) were identified. These drugs can be further considered for biowaiver status (drug product approval based on dissolution tests rather than bioequivalence studies in humans).


Assuntos
Biofarmácia , Legislação de Medicamentos , Preparações Farmacêuticas/classificação , Organização Mundial da Saúde , Administração Oral , Produtos Biológicos/classificação , Relação Dose-Resposta a Droga , Humanos , Permeabilidade , Solubilidade
15.
Pharmaceutics ; 2(4): 351-363, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27721362

RESUMO

Standard compendia dissolution apparatus are the first choice for development of new dissolution methods. Nevertheless, limitations coming from the amount of material available, analytical sensitivity, lack of discrimination or biorelevance may warrant the use of non compendial methods. In this regard, the use of small volume dissolution methods offers strong advantages. The present study aims primarily to evaluate the dissolution performance of various drug products having different release mechanisms, using commercially available small volume USP2 dissolution equipment. The present series of tests indicate that the small volume dissolution is a useful tool for the characterization of immediate release drug product. Depending on the release mechanism, different speed factors are proposed to mimic common one liter vessel performance. In addition, by increasing the discriminating power of the dissolution method, it potentially improves know how about formulations and on typical events which are evaluated during pharmaceutical development such as ageing or scale-up. In this regard, small volume dissolution is a method of choice in case of screening for critical quality attributes of rapidly dissolving tablets, where it is often difficult to detect differences using standard working conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa