Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Chromosome Res ; 30(2-3): 151-164, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35648282

RESUMO

The ability to subvert independent assortment of chromosomes is found in many meiotic drivers, such as the t haplotype in house mice Mus musculus, in which the t-bearing chromosomal homolog is preferentially transmitted to offspring. This is explained by a poison-antidote system, in which developing + and t sperm in testes of + /t males are exposed to 'poison' coded by t loci, from which t sperm are protected, allowing t sperm an overwhelming fertilisation advantage in monogamous matings. This system is thought to result in poorly and normally motile sperm subpopulations within + /t sperm, leaving t sperm unharmed. Conversely, we found that the fastest quartile of sperm from + /t males swam more slowly, both forwards and along their travel path, and had reduced straightness and linearity, compared to the fastest quartile of + / + sperm. Moreover, sperm from + /t males had shorter tails and narrower heads than + / + sperm, and these morphological differences covaried with motility differences. Finally, + /t traits did not show evidence of bimodal distributions. We conclude that the t haplotype drive results in lasting damage to the motility of both + and t developing sperm, although previous studies indicate that + must be more harmed than t sperm. This damage to all sperm may explain the low success of + /t males in sperm competition with + / + males, seen in earlier studies. We propose that the harm the t causes to itself could be termed 'spiteful', which may also be common to other gamete-harming meiotic drive systems.


Assuntos
Antídotos , Sêmen , Animais , Cromossomos , Haplótipos , Masculino , Camundongos , Espermatozoides
2.
Proc Biol Sci ; 289(1968): 20211985, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135349

RESUMO

The t-haplotype of mice is a classical model for autosomal transmission distortion. A largely non-recombining variant of the proximal region of chromosome 17, it is transmitted to more than 90% of the progeny of heterozygous males through the disabling of sperm carrying a standard chromosome. While extensive genetic and functional work has shed light on individual genes involved in drive, much less is known about the evolution and function of the rest of its hundreds of genes. Here, we characterize the sequence and expression of dozens of t-specific transcripts and of their chromosome 17 homologues. Many genes showed reduced expression of the t-allele, but an equal number of genes showed increased expression of their t-copy, consistent with increased activity or a newly evolved function. Genes on the t-haplotype had a significantly higher non-synonymous substitution rate than their homologues on the standard chromosome, with several genes harbouring dN/dS ratios above 1. Finally, the t-haplotype has acquired at least two genes from other chromosomes, which show high and tissue-specific expression. These results provide a first overview of the gene content of this selfish element, and support a more dynamic evolutionary scenario than expected of a large genomic region with almost no recombination.


Assuntos
Cromossomos , Genômica , Alelos , Animais , Haplótipos , Heterozigoto , Masculino , Camundongos
3.
J Evol Biol ; 35(4): 621-632, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255164

RESUMO

Meiotic drivers are selfish genetic elements that manipulate meiosis to increase their transmission to the next generation to the detriment of the rest of the genome. One example is the t haplotype in house mice, which is a naturally occurring meiotic driver with deleterious traits-poor fitness in polyandrous matings and homozygote inviability or infertility-that prevent its fixation. Recently, we discovered and validated a novel effect of t in a long-term field study on free-living wild house mice and with experiments: t-carriers are more likely to disperse. Here, we ask what known traits of the t haplotype can select for a difference in dispersal between t-carriers and wildtype mice. To that end, we built individual-based models with dispersal loci on the t and the homologous wildtype chromosomes. We also allow for density-dependent expression of these loci. The t haplotype consistently evolves to increase the dispersal propensity of its carriers, particularly at high densities. By examining variants of the model that modify different costs caused by t, we show that the increase in dispersal is driven by the deleterious traits of t, disadvantage in polyandrous matings and lethal homozygosity or male sterility. Finally, we show that an increase in driver-carrier dispersal can evolve across a range of values in driver strength and disadvantages.


Assuntos
Meiose , Reprodução , Animais , Haplótipos , Masculino , Camundongos , Fenótipo
4.
Horm Behav ; 138: 105102, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998227

RESUMO

Not only males but also females compete over reproduction. In a population of free-living house mice (Mus musculus domesticus), we analyzed how (metabolic) costs of aggressive interactions (reflected in fresh wounds and long-term corticosterone concentrations in hair) are predicted by individual reproductive physiology and reproductive success in males and females. Over eight years, we studied wounds and reproduction of more than 2800 adults under naturally varying environmental conditions and analyzed steroid hormones from more than 1000 hair samples. Hair corticosterone were higher and wounds more frequent in males than females. In males, wound occurrence increased with increasing breeding activity in the population, without affecting hair corticosterone levels. Unexpectedly, individual male reproductive success did not predict wounds, while hair corticosterone increased with increasing levels of hair testosterone and reproductive success. High corticosterone in hair of males might therefore reflect metabolic costs of fighting over reproduction. In females, hair corticosterone was generally lower than in males and high levels did not impede pregnancy. Reproductive investment (reflected in hair progesterone) was dissociated from reproductive success. Occasional wounds in females indicated individuals without recent reproductive success and revealed reproductive competition, presumably driven by instability in the social environment. In both sexes, corticosterone increased with age, but there was no evidence that received overt aggression, as indicated by wounds or elevated corticosterone, suppressed reproductive physiology. Our results diverge from laboratory findings and emphasize the need to also study animals in their natural environment in order to understand the complexity of their behavioral physiology.


Assuntos
Corticosterona , Reprodução , Animais , Corticosterona/metabolismo , Feminino , Cabelo/metabolismo , Masculino , Camundongos , Gravidez , Progesterona/metabolismo , Reprodução/fisiologia , Esteroides , Testosterona/metabolismo
5.
J Evol Biol ; 33(10): 1345-1360, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32969551

RESUMO

Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general.


Assuntos
Evolução Biológica , Tecnologia de Impulso Genético , Seleção Genética
6.
J Exp Biol ; 223(Pt 1)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31822551

RESUMO

Gene drive systems can lead to the evolution of traits that further enhance the transmission of the driving element. In gene drive, one allele is transmitted to offspring at a higher frequency than the homologous allele. This has a range of consequences, which generally include a reduction in fitness of the carrier of the driving allele, making such systems 'selfish'. The t haplotype is one such driver, found in house mice. It is linked to a reduction in litter size in matings among heterozygous animals, but also to increased lifespan in wild females that carry it. Here, we tested whether carrying the t haplotype was associated with altered resting metabolic rate (RMR). We show that females carrying the t haplotype decrease RMR as they increase in size, compared with wild-type females or males of either genotype. Our study elucidates a plausible mechanism by which a selfish genetic element increases lifespan.


Assuntos
Metabolismo Basal , Haplótipos/fisiologia , Longevidade/genética , Camundongos/fisiologia , Sequências Repetitivas de Ácido Nucleico/fisiologia , Animais , Feminino , Masculino , Camundongos/genética , Fatores Sexuais
7.
Nat Rev Genet ; 15(3): 176-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24535286

RESUMO

Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.


Assuntos
Genômica , Biodiversidade , Modelos Genéticos
8.
BMC Evol Biol ; 19(1): 25, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651079

RESUMO

BACKGROUND: Western house mice Mus musculus domesticus are among the most important mammalian model species for chromosomal speciation. Hybrids between chromosomal races of M. m. domesticus suffer various degrees of fertility reduction between full fertility and complete sterility, depending on the complexity of the chromosomal differences between the races. This complexity presents itself in hybrids as meiotic configurations of chromosome chains and rings, with longer configurations having a stronger impact on fertility. While hybrids with short configurations have been intensively studied, less work has been done on hybrids with very long configurations. In this study, we investigated laboratory-reared wild mice from two chromosomally very different races in Switzerland found in close proximity. Hybrids between these races form a meiotic chain of fifteen chromosomes. We performed a detailed analysis of male and female hybrid fertility, including three generations of female backcrosses to one of the parental races. We also tested for possible divergence of mate preference in females. RESULTS: While all male F1 hybrids were sterile with sperm counts of zero, 48% of female F1 hybrids produced offspring. Their litter sizes ranged from one to three which is significantly lower than the litter size of parental race females. When hybrid females were backcrossed to a parental race, half of the offspring resembled the parental race in karyotype and fertility, while the other half resembled the F1 hybrids. In the preference test, females of both races indicated a lack of a preference for males of their own karyotype. CONCLUSIONS: Although the fertility of the F1 hybrids was extremely low because of the complexity of the chromosomal differences between the races, reproductive isolation was not complete. As we did not find assortative female preferences, we expect that contact between these races would lead to the production of hybrids and that gene flow would occur eventually, as fertility can be restored fully after one backcross generation.


Assuntos
Cromossomos de Mamíferos/genética , Fertilidade/genética , Variação Genética , Hibridização Genética , Preferência de Acasalamento Animal/fisiologia , Animais , Cruzamentos Genéticos , Feminino , Fluxo Gênico , Geografia , Padrões de Herança/genética , Masculino , Meiose/genética , Camundongos , Suíça
9.
Am Nat ; 193(1): 106-124, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624110

RESUMO

Alternative reproductive tactics (ARTs) are defined as discrete differences in morphological, physiological, and/or behavioral traits associated with reproduction that occur within the same sex and population. House mice provide a rare example of ARTs in females, which can rear their young either solitarily or together with one or several other females in a communal nest. We assessed the fitness consequences of communal and solitary breeding in a wild population to understand how the two tactics can be evolutionarily stable. Females switched between the two tactics (with more than 50% of all females having two or more litters using both tactics), pointing toward communal and solitary breeding being two tactics within a single strategy and not two genetically determined strategies. Communal breeding resulted in reduced pup survival and negatively impacted female reproductive success. Older and likely heavier females more often reared their litters solitarily, indicating that females use a condition-dependent strategy. Solitary breeding seems the more successful tactic, and only younger and likely less competitive females might opt for communal nursing, even at the cost of increased pup mortality. This study emphasizes the importance of analyzing phenotypic plasticity and its role in cooperation in the context of female ARTs.


Assuntos
Evolução Biológica , Aptidão Genética , Camundongos/psicologia , Comportamento de Nidação , Reprodução , Animais , Feminino , Camundongos/genética
10.
Proc Biol Sci ; 285(1888)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282651

RESUMO

Life is built on cooperation between genes, which makes it vulnerable to parasitism. Selfish genetic elements that exploit this cooperation can achieve large fitness gains by increasing their transmission relative to the rest of the genome. This leads to counter-adaptations that generate unique selection pressures on the selfish genetic element. This arms race is similar to host-parasite coevolution, as some multi-host parasites alter the host's behaviour to increase the chance of transmission to the next host. Here, we ask if, similarly to these parasites, a selfish genetic element in house mice, the t haplotype, also manipulates host behaviour, specifically the host's migration propensity. Variants of the t that manipulate migration propensity could increase in fitness in a meta-population. We show that juvenile mice carrying the t haplotype were more likely to emigrate from and were more often found as migrants within a long-term free-living house mouse population. This result may have applied relevance as the t has been proposed as a basis for artificial gene drive systems for use in population control.


Assuntos
Migração Animal , Camundongos/fisiologia , Sequências Repetitivas de Ácido Nucleico/fisiologia , Animais , Animais Selvagens/genética , Animais Selvagens/fisiologia , Feminino , Haplótipos , Masculino , Camundongos/genética , Modelos Genéticos , Suíça
11.
Front Zool ; 15: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467798

RESUMO

BACKGROUND: Communal nursing in house mice is an example of cooperation where females pool litters in the same nest and indiscriminately nurse own and other offspring despite potential exploitation. The direct fitness benefits associated with communal nursing shown in laboratory studies suggest it to be a selected component of female house mice reproductive behaviour. However, past studies on communal nursing in free-living populations have debated whether it is a consequence of sharing the same nest or an active choice. Here using data from a long-term study of free-living, wild house mice we investigated individual nursing decisions and determined what factors influenced a female's decision to nurse communally. RESULTS: Females chose to nurse solitarily more often than expected by chance, but the likelihood of nursing solitarily decreased when females had more partners available. While finding no influence of pairwise relatedness on partner choice, we observed that females shared their social environment with genetically similar individuals, suggesting a female's home area consisted of related females, possibly facilitating the evolution of cooperation. Within such a home area females were more likely to nest communally when the general relatedness of her available options was relatively high. Females formed communal nests with females that were familiar through previous associations and had young pups of usually less than 5 days old. CONCLUSIONS: Our findings suggest that communal nursing was not a by-product of sharing the same nesting sites, but females choose communal nursing partners from a group of genetically similar females, and ultimately the decision may then depend on the pool of options available. Social partner choice proved to be an integrated part of cooperation among females, and might allow females to reduce the conflict over number of offspring in a communal nest and milk investment towards own and other offspring. We suggest that social partner choice may be a general mechanism to stabilize costly cooperation.

12.
Mol Biol Evol ; 33(6): 1381-95, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26882987

RESUMO

A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.


Assuntos
Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Sequências Repetitivas de Ácido Nucleico , Adaptação Fisiológica/genética , Alelos , Animais , Evolução Biológica , Variações do Número de Cópias de DNA/genética , Evolução Molecular , Feminino , Variação Genética , Genética Populacional , Masculino , Camundongos , Modelos Genéticos , Mutação , Seleção Genética
13.
Mol Ecol ; 26(20): 5784-5792, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28636785

RESUMO

Drive genes are genetic elements that manipulate the 50% ratio of Mendelian inheritance in their own favour, allowing them to rapidly propagate through populations. The action of drive genes is often hidden, making detection and identification inherently difficult. Yet drive genes can have profound evolutionary consequences for the populations that harbour them: most known drivers are detrimental to organismal gamete development, reproduction and survival. In this study, we identified the presence of a well-known drive gene called t haplotype post hoc in eight replicate selection lines of house mice that had been evolving under enforced monandry or polyandry for 20 generations. Previous work on these selection lines reported an increase in sperm competitive ability in males evolving under polyandry. Here, we show that this evolutionary response can be partly attributed to gene drive. We demonstrate that drive-carrying males are substantially compromised in their sperm competitive ability. As a consequence, we found that t frequencies declined significantly in the polyandrous lines while remaining at stable, high levels in the monandrous lines. For the first time in a vertebrate, we thus provide direct experimental evidence that the mating system of a species can have important repercussions on the spread of drive genes over evolutionary relevant timescales. Moreover, our work highlights how the covert action of drive genes can have major, potentially unintended impact on our study systems.


Assuntos
Evolução Molecular , Genética Populacional , Padrões de Herança , Camundongos/genética , Espermatozoides/fisiologia , Animais , Feminino , Aptidão Genética , Haplótipos , Masculino , Reprodução/genética
14.
BMC Evol Biol ; 16(1): 133, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328665

RESUMO

BACKGROUND: With female multiple mating (polyandry), male-male competition extends to after copulation (sperm competition). Males respond to this selective pressure through physiological, morphological and behavioural adaptations. Sperm competitiveness is commonly decreased in heterozygote carriers of male meiotic drivers, selfish genetic elements that manipulate the production of gametes in males. This might give carriers an evolutionary incentive to reduce the risk of sperm competition. Here, we explore this possibility in house mice. Natural populations frequently harbour a well-characterised male driver (t haplotype), which is transmitted to 90 % of heterozygous (+/t) males' offspring. Previous research demonstrated strong detrimental effects on sperm competitiveness, and suggested that +/t males are particularly disadvantaged against wild type males when first-to-mate. Low paternity success in the first-to-mate role is expected to favour male adaptations that decrease the risk of sperm competition by preventing female remating. Genotype-specific paternity patterns (sperm precedence) could lead to genetically determined alternative reproductive tactics that can spread through gene level selection. Here, we seek confirmation that +/t males are generally disadvantaged when first-to-mate and address whether males of different genotypes differ in reproductive tactics (copulatory and morphological) to maximise individual or driver fitness. Finally, we attempt to explain the mechanistic basis for alternative sperm precedence patterns in this species. RESULTS: We confirmed that +/t males are weak sperm competitors when first to mate. When two +/t males competed, the second-to-mate was more successful, which contrasts with first male sperm precedence when wild type males competed. However, we found no differences between male genotypes in reproductive behaviour or morphology that were consistent with alternative reproductive tactics. Sperm of +/+ and +/t males differed with respect to in vitro sperm features. Premature hypermotility in +/t males' sperm can potentially explain why +/t males are very weak sperm competitors when first-to-mate. CONCLUSIONS: Our results demonstrate that meiotic drivers can have strong effects on sperm precedence patterns, and may provide a heritable basis for alternative reproductive tactics motivated by reduced sperm competitiveness. We discuss how experimental and evolutionary constraints may help explain why male genotypes did not show the predicted differences.


Assuntos
Meiose , Comportamento Sexual Animal , Espermatozoides/fisiologia , Animais , Feminino , Genitália Masculina/anatomia & histologia , Genótipo , Haplótipos , Masculino , Camundongos , Reprodução/genética , Comportamento Sexual Animal/fisiologia , Espermatozoides/citologia
15.
Proc Biol Sci ; 283(1830)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170710

RESUMO

Conditional adjustment of cooperativeness to the expected pay-off might be a useful strategy to avoid being exploited in public good situations. Parental care provided towards all offspring in a communal nest (containing offspring of several females) resembles a public good. Females indiscriminately caring for all young share the costs equally, but the pay-off may vary depending on their contribution to the joint nest (number of own offspring). Females with fewer offspring in the joint nest will be exploited and overinvest relative to their contribution. We experimentally created a situation of high conflict in communally nursing house mice, by using a genetic tool to create a difference in birth litter sizes. Females in the high conflict situation (unequal litter sizes at birth) showed a reduced propensity to give birth as part of a communal nest, therefore adjusting their cooperativeness to the circumstances.


Assuntos
Comportamento Animal , Comportamento Cooperativo , Animais , Feminino , Haplótipos , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , Suíça
16.
Emerg Infect Dis ; 21(1): 133-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25531919

RESUMO

The animals primarily infected by Francisella tularensis are rapidly consumed by scavengers, hindering ecologic investigation of the bacterium. We describe a 2012 natural tularemia epizootic among house mice in Switzerland and the assessment of infection of exposed humans. The humans were not infected, but the epizootic coincided with increased reports of human cases in the area.


Assuntos
Surtos de Doenças , Doenças dos Roedores/epidemiologia , Tularemia/veterinária , Animais , Exposição Ambiental , Francisella tularensis/genética , Humanos , Camundongos , Doenças dos Roedores/microbiologia , Doenças dos Roedores/transmissão , Suíça/epidemiologia , Tularemia/epidemiologia , Tularemia/transmissão
17.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26136452

RESUMO

Female multiple mating (polyandry) is widespread across many animal taxa and indirect genetic benefits are a major evolutionary force favouring polyandry. An incentive for polyandry arises when multiple mating leads to sperm competition that disadvantages sperm from genetically inferior mates. A reduction in genetic quality is associated with costly selfish genetic elements (SGEs), and studies in invertebrates have shown that males bearing sex ratio distorting SGEs are worse sperm competitors than wild-type males.We used a vertebrate model species to test whether females can avoid an autosomal SGE, the t haplotype, through polyandry. The t haplotype inhouse mice exhibits strong drive in t heterozygous males by affecting spermatogenesis and is associated with homozygous in utero lethality. We used controlled matings to test the effect of the t haplotype on sperm competitiveness. Regardless of mating order, t heterozygous males sired only 11% of zygotes when competing against wild-type males, suggesting a very strong effect of the t haplotype on sperm quality. We provide, to our knowledge,the first substantial evidence that polyandry ameliorates the harmful effects of an autosomal SGE arising through genetic incompatibility. We discuss potential mechanisms in our study species and the broader implications for the benefits of polyandry.


Assuntos
Camundongos/fisiologia , Sequências Repetitivas de Ácido Nucleico , Comportamento Sexual Animal , Espermatozoides/fisiologia , Animais , Feminino , Haplótipos , Masculino , Camundongos/genética , Reprodução
18.
Front Zool ; 11(1): 18, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24564853

RESUMO

INTRODUCTION: Experimental litter size manipulations are often not problem free. Typically conducted shortly after birth or oviposition, they do not account for the energy already invested into the production of the offspring. Such effects make it difficult to interpret the results from experimental litter size manipulations and therefore to study optimality of litter or clutch size, a long debated topic in evolutionary biology. RESULTS: We propose the use of a mating design based on a selfish genetic element, the t haplotype, to reduce litter size in an eutherian mammal, the house mouse. Most t haplotypes are recessive lethal and therefore lead to the death of all homozygous embryos. Litter sizes can be reduced by up to 50% by pairing a +/t female with a +/t male instead of a +/+ male. CONCLUSIONS: This method allows litter size manipulation before birth without the use of invasive techniques, therefore providing an excellent tool for studying optimal litter size and ultimately helping to understand life history strategies.

19.
Naturwissenschaften ; 101(1): 73-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24389536

RESUMO

Communal nursing, the provision of milk to non-offspring, has been argued to be a non-adaptive by-product of group living. We used 2 years of field data from a wild house mouse population to investigate this question. Communal nursing never occurred among females that previously lacked overlap in nest box use. Females nursed communally in only 33% of cases in which there was a communal nursing partner available from the same social group. Solitarily nursing females were not socially isolated in their group; nevertheless, high spatial associations prior to reproduction predict which potential female partner was chosen for communal nursing. An increase in partner availability increased the probability of communal nursing, but population density itself had a negative effect, which may reflect increased female reproductive competition during summer. These results argue that females are selective in their choice of nursing partners and provide further support that communal nursing with the right partner is adaptive.


Assuntos
Comportamento Animal/fisiologia , Comportamento de Nidação/fisiologia , Animais , Feminino , Camundongos , Densidade Demográfica , Estações do Ano
20.
R Soc Open Sci ; 10(12): 231829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094275

RESUMO

[This corrects the article DOI: 10.1098/rsos.172099.][This corrects the article DOI: 10.1098/rsos.172099.].

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa