Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Prev Med ; : 107974, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38677482

RESUMO

OBJECTIVE: To synthesize existing evidence on possible differential effects by sex and gender from two Cochrane reviews evaluating vaping and smoking transitions. METHODS: We screened included studies from two Cochrane reviews for studies reporting smoking outcomes based on gender or sex. The first review examines the effects of using e-cigarettes to help people quit smoking and includes randomized controlled trials and uncontrolled intervention studies published to July 2023. The second review aims to assess the evidence on the relationship between the use and availability of e-cigarettes and subsequent smoking in young people (aged 29 and younger) and includes quasi-experimental and cohort studies published to April 2023. Due to the paucity and heterogeneity of data, we report results narratively. RESULTS: 10 of 161 studies included in the two relevant reviews met our criteria. Only five reported analyzing whether observed effects or associations varied based on sex and/or gender. A further three provided relevant descriptive information, and two did not report overall outcomes regarding vaping and smoking transitions but did investigate whether these differed by sex/gender. Synthesized data were largely inconclusive, but there was some suggestion that vaping was more strongly associated with subsequent smoking in young males than females. No studies reported data on nonbinary participants. CONCLUSIONS: Despite plausible reasons why sex and gender may be moderators of vaping and smoking transitions, there is little evidence investigating this. Future studies of vaping and smoking transitions should conduct and report analyses investigating potential differences based on sex and gender.

2.
Cochrane Database Syst Rev ; 1: CD010216, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189560

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol by heating an e-liquid. People who smoke, healthcare providers and regulators want to know if ECs can help people quit smoking, and if they are safe to use for this purpose. This is a review update conducted as part of a living systematic review. OBJECTIVES: To examine the safety, tolerability and effectiveness of using electronic cigarettes (ECs) to help people who smoke tobacco achieve long-term smoking abstinence, in comparison to non-nicotine EC, other smoking cessation treatments and no treatment. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register to 1 February 2023, and Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 July 2023, and reference-checked and contacted study authors. SELECTION CRITERIA: We included trials in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention as these studies have the potential to provide further information on harms and longer-term use. Studies had to report an eligible outcome. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Critical outcomes were abstinence from smoking after at least six months, adverse events (AEs), and serious adverse events (SAEs). We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in pairwise and network meta-analyses (NMA). MAIN RESULTS: We included 88 completed studies (10 new to this update), representing 27,235 participants, of which 47 were randomized controlled trials (RCTs). Of the included studies, we rated ten (all but one contributing to our main comparisons) at low risk of bias overall, 58 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. There is high certainty that nicotine EC increases quit rates compared to nicotine replacement therapy (NRT) (RR 1.59, 95% CI 1.29 to 1.93; I2 = 0%; 7 studies, 2544 participants). In absolute terms, this might translate to an additional four quitters per 100 (95% CI 2 to 6 more). There is moderate-certainty evidence (limited by imprecision) that the rate of occurrence of AEs is similar between groups (RR 1.03, 95% CI 0.91 to 1.17; I2 = 0%; 5 studies, 2052 participants). SAEs were rare, and there is insufficient evidence to determine whether rates differ between groups due to very serious imprecision (RR 1.20, 95% CI 0.90 to 1.60; I2 = 32%; 6 studies, 2761 participants; low-certainty evidence). There is moderate-certainty evidence, limited by imprecision, that nicotine EC increases quit rates compared to non-nicotine EC (RR 1.46, 95% CI 1.09 to 1.96; I2 = 4%; 6 studies, 1613 participants). In absolute terms, this might lead to an additional three quitters per 100 (95% CI 1 to 7 more). There is moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 5 studies, 1840 participants). There is insufficient evidence to determine whether rates of SAEs differ between groups, due to very serious imprecision (RR 1.00, 95% CI 0.56 to 1.79; I2 = 0%; 9 studies, 1412 participants; low-certainty evidence). Due to issues with risk of bias, there is low-certainty evidence that, compared to behavioural support only/no support, quit rates may be higher for participants randomized to nicotine EC (RR 1.88, 95% CI 1.56 to 2.25; I2 = 0%; 9 studies, 5024 participants). In absolute terms, this represents an additional four quitters per 100 (95% CI 2 to 5 more). There was some evidence that (non-serious) AEs may be more common in people randomized to nicotine EC (RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low-certainty evidence; 4 studies, 765 participants) and, again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 0.89, 95% CI 0.59 to 1.34; I2 = 23%; 10 studies, 3263 participants; very low-certainty evidence). Results from the NMA were consistent with those from pairwise meta-analyses for all critical outcomes, and there was no indication of inconsistency within the networks. Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued EC use. Very few studies reported data on other outcomes or comparisons, hence, evidence for these is limited, with CIs often encompassing both clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is high-certainty evidence that ECs with nicotine increase quit rates compared to NRT and moderate-certainty evidence that they increase quit rates compared to ECs without nicotine. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain due to risk of bias inherent in the study design. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, with no difference in AEs between nicotine and non-nicotine ECs nor between nicotine ECs and NRT. Overall incidence of SAEs was low across all study arms. We did not detect evidence of serious harm from nicotine EC, but the longest follow-up was two years and the number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this review is a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos , Nicotina/efeitos adversos , Terapia de Substituição da Nicotina , Ensaios Clínicos Controlados Aleatórios como Assunto , Metanálise em Rede
3.
Cochrane Database Syst Rev ; 5: CD000031, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37230961

RESUMO

BACKGROUND: The pharmacological profiles and mechanisms of antidepressants are varied. However, there are common reasons why they might help people to stop smoking tobacco: nicotine withdrawal can produce short-term low mood that antidepressants may relieve; and some antidepressants may have a specific effect on neural pathways or receptors that underlie nicotine addiction. OBJECTIVES: To assess the evidence for the efficacy, harms, and tolerability of medications with antidepressant properties in assisting long-term tobacco smoking cessation in people who smoke cigarettes. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group Specialised Register, most recently on 29 April 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) in people who smoked, comparing antidepressant medications with placebo or no pharmacological treatment, an alternative pharmacotherapy, or the same medication used differently. We excluded trials with fewer than six months of follow-up from efficacy analyses. We included trials with any follow-up length for our analyses of harms. DATA COLLECTION AND ANALYSIS: We extracted data and assessed risk of bias using standard Cochrane methods. Our primary outcome measure was smoking cessation after at least six months' follow-up. We used the most rigorous definition of abstinence available in each trial, and biochemically validated rates if available. Our secondary outcomes were harms and tolerance outcomes, including adverse events (AEs), serious adverse events (SAEs), psychiatric AEs, seizures, overdoses, suicide attempts, death by suicide, all-cause mortality, and trial dropouts due to treatment. We carried out meta-analyses where appropriate. MAIN RESULTS: We included a total of 124 studies (48,832 participants) in this review, with 10 new studies added to this update version. Most studies recruited adults from the community or from smoking cessation clinics; four studies focused on adolescents (with participants between 12 and 21 years old). We judged 34 studies to be at high risk of bias; however, restricting analyses only to studies at low or unclear risk of bias did not change clinical interpretation of the results.  There was high-certainty evidence that bupropion increased smoking cessation rates when compared to placebo or no pharmacological treatment (RR 1.60, 95% CI 1.49 to 1.72; I2 = 16%; 50 studies, 18,577 participants). There was moderate-certainty evidence that a combination of bupropion and varenicline may have resulted in superior quit rates to varenicline alone (RR 1.21, 95% CI 0.95 to 1.55; I2 = 15%; 3 studies, 1057 participants). However, there was insufficient evidence to establish whether a combination of bupropion and nicotine replacement therapy (NRT) resulted in superior quit rates to NRT alone (RR 1.17, 95% CI 0.95 to 1.44; I2 = 43%; 15 studies, 4117 participants; low-certainty evidence). There was moderate-certainty evidence that participants taking bupropion were more likely to report SAEs than those taking placebo or no pharmacological treatment. However, results were imprecise and the CI also encompassed no difference (RR 1.16, 95% CI 0.90 to 1.48; I2 = 0%; 23 studies, 10,958 participants). Results were also imprecise when comparing SAEs between people randomised to a combination of bupropion and NRT versus NRT alone (RR 1.52, 95% CI 0.26 to 8.89; I2 = 0%; 4 studies, 657 participants) and randomised to bupropion plus varenicline versus varenicline alone (RR 1.23, 95% CI 0.63 to 2.42; I2 = 0%; 5 studies, 1268 participants). In both cases, we judged evidence to be of low certainty. There was high-certainty evidence that bupropion resulted in more trial dropouts due to AEs than placebo or no pharmacological treatment (RR 1.44, 95% CI 1.27 to 1.65; I2 = 2%; 25 studies, 12,346 participants). However, there was insufficient evidence that bupropion combined with NRT versus NRT alone (RR 1.67, 95% CI 0.95 to 2.92; I2 = 0%; 3 studies, 737 participants) or bupropion combined with varenicline versus varenicline alone (RR 0.80, 95% CI 0.45 to 1.45; I2 = 0%; 4 studies, 1230 participants) had an impact on the number of dropouts due to treatment. In both cases, imprecision was substantial (we judged the evidence to be of low certainty for both comparisons). Bupropion resulted in inferior smoking cessation rates to varenicline (RR 0.73, 95% CI 0.67 to 0.80; I2 = 0%; 9 studies, 7564 participants), and to combination NRT (RR 0.74, 95% CI 0.55 to 0.98; I2 = 0%; 2 studies; 720 participants). However, there was no clear evidence of a difference in efficacy between bupropion and single-form NRT (RR 1.03, 95% CI 0.93 to 1.13; I2 = 0%; 10 studies, 7613 participants). We also found evidence that nortriptyline aided smoking cessation when compared with placebo (RR 2.03, 95% CI 1.48 to 2.78; I2 = 16%; 6 studies, 975 participants), and some evidence that bupropion resulted in superior quit rates to nortriptyline (RR 1.30, 95% CI 0.93 to 1.82; I2 = 0%; 3 studies, 417 participants), although this result was subject to imprecision. Findings were sparse and inconsistent as to whether antidepressants, primarily bupropion and nortriptyline, had a particular benefit for people with current or previous depression. AUTHORS' CONCLUSIONS: There is high-certainty evidence that bupropion can aid long-term smoking cessation. However, bupropion may increase SAEs (moderate-certainty evidence when compared to placebo/no pharmacological treatment). There is high-certainty evidence that people taking bupropion are more likely to discontinue treatment compared with people receiving placebo or no pharmacological treatment. Nortriptyline also appears to have a beneficial effect on smoking quit rates relative to placebo, although bupropion may be more effective. Evidence also suggests that bupropion may be as successful as single-form NRT in helping people to quit smoking, but less effective than combination NRT and varenicline. In most cases, a paucity of data made it difficult to draw conclusions regarding harms and tolerability. Further studies investigating the efficacy of bupropion versus placebo are unlikely to change our interpretation of the effect, providing no clear justification for pursuing bupropion for smoking cessation over other licensed smoking cessation treatments; namely, NRT and varenicline. However, it is important that future studies of antidepressants for smoking cessation measure and report on harms and tolerability.


Assuntos
Abandono do Hábito de Fumar , Adolescente , Adulto , Criança , Humanos , Adulto Jovem , Antidepressivos/efeitos adversos , Bupropiona/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Nortriptilina/efeitos adversos , Abandono do Hábito de Fumar/métodos , Vareniclina/efeitos adversos
4.
Cochrane Database Syst Rev ; 5: CD006103, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142273

RESUMO

BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). This is an update of a Cochrane Review first published in 2007. OBJECTIVES: To assess the effectiveness of nicotine receptor partial agonists, including varenicline and cytisine, for smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialised Register in April 2022 for trials, using relevant terms in the title or abstract, or as keywords. The register is compiled from searches of CENTRAL, MEDLINE, Embase, and PsycINFO.  SELECTION CRITERIA: We included randomised controlled trials that compared the treatment drug with placebo, another smoking cessation drug, e-cigarettes, or no medication. We excluded trials that did not report a minimum follow-up period of six months from baseline. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods. Our main outcome was abstinence from smoking at longest follow-up using the most rigorous definition of abstinence, preferring biochemically validated rates where reported. We pooled risk ratios (RRs), using the Mantel-Haenszel fixed-effect model. We also reported the number of people reporting serious adverse events (SAEs). MAIN RESULTS: We included 75 trials of 45,049 people; 45 were new for this update. We rated 22 at low risk of bias, 18 at high risk, and 35 at unclear risk. We found moderate-certainty evidence (limited by heterogeneity) that cytisine helps more people to quit smoking than placebo (RR 1.30, 95% confidence interval (CI) 1.15 to 1.47; I2 = 83%; 4 studies, 4623 participants), and no evidence of a difference in the number reporting SAEs (RR 1.04, 95% CI 0.78 to 1.37; I2 = 0%; 3 studies, 3781 participants; low-certainty evidence). SAE evidence was limited by imprecision. We found no data on neuropsychiatric or cardiac SAEs. We found high-certainty evidence that varenicline helps more people to quit than placebo (RR 2.32, 95% CI 2.15 to 2.51; I2 = 60%, 41 studies, 17,395 participants), and moderate-certainty evidence that people taking varenicline are more likely to report SAEs than those not taking it (RR 1.23, 95% CI 1.01 to 1.48; I2 = 0%; 26 studies, 14,356 participants). While point estimates suggested increased risk of cardiac SAEs (RR 1.20, 95% CI 0.79 to 1.84; I2 = 0%; 18 studies, 7151 participants; low-certainty evidence), and decreased risk of neuropsychiatric SAEs (RR 0.89, 95% CI 0.61 to 1.29; I2 = 0%; 22 studies, 7846 participants; low-certainty evidence), in both cases evidence was limited by imprecision, and confidence intervals were compatible with both benefit and harm. Pooled results from studies that randomised people to receive cytisine or varenicline showed that more people in the varenicline arm quit smoking (RR 0.83, 95% CI 0.66 to 1.05; I2 = 0%; 2 studies, 2131 participants; moderate-certainty evidence) and reported SAEs (RR 0.67, 95% CI 0.44 to 1.03; I2 = 45%; 2 studies, 2017 participants; low-certainty evidence). However, the evidence was limited by imprecision, and confidence intervals incorporated the potential for benefit from either cytisine or varenicline. We found no data on neuropsychiatric or cardiac SAEs. We found high-certainty evidence that varenicline helps more people to quit than bupropion (RR 1.36, 95% CI 1.25 to 1.49; I2 = 0%; 9 studies, 7560 participants), and no clear evidence of difference in rates of SAEs (RR 0.89, 95% CI 0.61 to 1.31; I2 = 0%; 5 studies, 5317 participants), neuropsychiatric SAEs (RR 1.05, 95% CI 0.16 to 7.04; I2 = 10%; 2 studies, 866 participants), or cardiac SAEs (RR 3.17, 95% CI 0.33 to 30.18; I2 = 0%; 2 studies, 866 participants). Evidence of harms was of low certainty, limited by imprecision. We found high-certainty evidence that varenicline helps more people to quit than a single form of nicotine replacement therapy (NRT) (RR 1.25, 95% CI 1.14 to 1.37; I2 = 28%; 11 studies, 7572 participants), and low-certainty evidence, limited by imprecision, of fewer reported SAEs (RR 0.70, 95% CI 0.50 to 0.99; I2 = 24%; 6 studies, 6535 participants). We found no data on neuropsychiatric or cardiac SAEs. We found no clear evidence of a difference in quit rates between varenicline and dual-form NRT (RR 1.02, 95% CI 0.87 to 1.20; I2 = 0%; 5 studies, 2344 participants; low-certainty evidence, downgraded because of imprecision). While pooled point estimates suggested increased risk of SAEs (RR 2.15, 95% CI 0.49 to 9.46; I2 = 0%; 4 studies, 1852 participants) and neuropsychiatric SAEs (RR 4.69, 95% CI 0.23 to 96.50; I2 not estimable as events only in 1 study; 2 studies, 764 participants), and reduced risk of cardiac SAEs (RR 0.32, 95% CI 0.01 to 7.88; I2 not estimable as events only in 1 study; 2 studies, 819 participants), in all three cases evidence was of low certainty and confidence intervals were very wide, encompassing both substantial harm and benefit. AUTHORS' CONCLUSIONS: Cytisine and varenicline both help more people to quit smoking than placebo or no medication. Varenicline is more effective at helping people to quit smoking than bupropion, or a single form of NRT, and may be as or more effective than dual-form NRT. People taking varenicline are probably more likely to experience SAEs than those not taking it, and while there may be increased risk of cardiac SAEs and decreased risk of neuropsychiatric SAEs, evidence was compatible with both benefit and harm. Cytisine may lead to fewer people reporting SAEs than varenicline. Based on studies that directly compared cytisine and varenicline, there may be a benefit from varenicline for quitting smoking, however further evidence could strengthen this finding or demonstrate a benefit from cytisine. Future trials should test the effectiveness and safety of cytisine compared with varenicline and other pharmacotherapies, and should also test variations in dose and duration. There is limited benefit to be gained from more trials testing the effect of standard-dose varenicline compared with placebo for smoking cessation. Further trials on varenicline should test variations in dose and duration, and compare varenicline with e-cigarettes for smoking cessation.


Assuntos
Alcaloides , Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos , Abandono do Hábito de Fumar/métodos , Nicotina/efeitos adversos , Vareniclina/efeitos adversos , Bupropiona/efeitos adversos , Dispositivos para o Abandono do Uso de Tabaco , Agonistas Nicotínicos/efeitos adversos , Alcaloides/efeitos adversos
5.
Cochrane Database Syst Rev ; 6: CD013308, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335995

RESUMO

BACKGROUND: Nicotine replacement therapy (NRT) aims to replace nicotine from cigarettes. This helps to reduce cravings and withdrawal symptoms, and ease the transition from cigarette smoking to complete abstinence. Although there is high-certainty evidence that NRT is effective for achieving long-term smoking abstinence, it is unclear whether different forms, doses, durations of treatment or timing of use impacts its effects. OBJECTIVES: To determine the effectiveness and safety of different forms, deliveries, doses, durations and schedules of NRT, for achieving long-term smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group trials register for papers mentioning NRT in the title, abstract or keywords, most recently in April 2022. SELECTION CRITERIA: We included randomised trials in people motivated to quit, comparing one type of NRT use with another. We excluded studies that did not assess cessation as an outcome, with follow-up of fewer than six months, and with additional intervention components not matched between arms. Separate reviews cover studies comparing NRT to control, or to other pharmacotherapies. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods. We measured smoking abstinence after at least six months, using the most rigorous definition available. We extracted data on cardiac adverse events (AEs), serious adverse events (SAEs) and study withdrawals due to treatment.  MAIN RESULTS: We identified 68 completed studies with 43,327 participants, five of which are new to this update. Most completed studies recruited adults either from the community or from healthcare clinics. We judged 28 of the 68 studies to be at high risk of bias. Restricting the analysis only to those studies at low or unclear risk of bias did not significantly alter results for any comparisons apart from the preloading comparison, which tested the effect of using NRT prior to quit day whilst still smoking.  There is high-certainty evidence that combination NRT (fast-acting form plus patch) results in higher long-term quit rates than single form (risk ratio (RR) 1.27, 95% confidence interval (CI) 1.17 to 1.37; I2 = 12%; 16 studies, 12,169 participants). Moderate-certainty evidence, limited by imprecision, indicates that 42/44 mg patches are as effective as 21/22 mg (24-hour) patches (RR 1.09, 95% CI 0.93 to 1.29; I2 = 38%; 5 studies, 1655 participants), and that 21 mg patches are more effective than 14 mg (24-hour) patches (RR 1.48, 95% CI 1.06 to 2.08; 1 study, 537 participants). Moderate-certainty evidence, again limited by imprecision, also suggests a benefit of 25 mg over 15 mg (16-hour) patches, but the lower limit of the CI encompassed no difference (RR 1.19, 95% CI 1.00 to 1.41; I2 = 0%; 3 studies, 3446 participants). Nine studies tested the effect of using NRT prior to quit day (preloading) in comparison to using it from quit day onward. There was moderate-certainty evidence, limited by risk of bias, of a favourable effect of preloading on abstinence (RR 1.25, 95% CI 1.08 to 1.44; I2 = 0%; 9 studies, 4395 participants). High-certainty evidence from eight studies suggests that using either a form of fast-acting NRT or a nicotine patch results in similar long-term quit rates (RR 0.90, 95% CI 0.77 to 1.05; I2 = 0%; 8 studies, 3319 participants). We found no clear evidence of an effect of duration of nicotine patch use (low-certainty evidence); duration of combination NRT use (low- and very low-certainty evidence); or fast-acting NRT type (very low-certainty evidence). Cardiac AEs, SAEs and withdrawals due to treatment were all measured variably and infrequently across studies, resulting in low- or very low-certainty evidence for all comparisons. Most comparisons found no clear evidence of an effect on these outcomes, and rates were low overall. More withdrawals due to treatment were reported in people using nasal spray compared to patches in one study (RR 3.47, 95% CI 1.15 to 10.46; 1 study, 922 participants; very low-certainty evidence) and in people using 42/44 mg patches in comparison to 21/22 mg patches across two studies (RR 4.99, 95% CI 1.60 to 15.50; I2 = 0%; 2 studies, 544 participants; low-certainty evidence). AUTHORS' CONCLUSIONS: There is high-certainty evidence that using combination NRT versus single-form NRT and 4 mg versus 2 mg nicotine gum can result in an increase in the chances of successfully stopping smoking. Due to imprecision, evidence was of moderate certainty for patch dose comparisons. There is some indication that the lower-dose nicotine patches and gum may be less effective than higher-dose products. Using a fast-acting form of NRT, such as gum or lozenge, resulted in similar quit rates to nicotine patches. There is moderate-certainty evidence that using NRT before quitting may improve quit rates versus using it from quit date only; however, further research is needed to ensure the robustness of this finding. Evidence for the comparative safety and tolerability of different types of NRT use is limited. New studies should ensure that AEs, SAEs and withdrawals due to treatment are reported.


Assuntos
Abandono do Hábito de Fumar , Humanos , Abandono do Hábito de Fumar/métodos , Nicotina , Agonistas Nicotínicos/efeitos adversos , Dispositivos para o Abandono do Uso de Tabaco , Atenção à Saúde
6.
Cochrane Database Syst Rev ; 9: CD015226, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696529

RESUMO

BACKGROUND: Tobacco smoking is the leading preventable cause of death and disease worldwide. Stopping smoking can reduce this harm and many people would like to stop. There are a number of medicines licenced to help people quit globally, and e-cigarettes are used for this purpose in many countries. Typically treatments work by reducing cravings to smoke, thus aiding initial abstinence and preventing relapse. More information on comparative effects of these treatments is needed to inform treatment decisions and policies. OBJECTIVES: To investigate the comparative benefits, harms and tolerability of different smoking cessation pharmacotherapies and e-cigarettes, when used to help people stop smoking tobacco. SEARCH METHODS: We identified studies from recent updates of Cochrane Reviews investigating our interventions of interest. We updated the searches for each review using the Cochrane Tobacco Addiction Group (TAG) specialised register to 29 April 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs), cluster-RCTs and factorial RCTs, which measured smoking cessation at six months or longer, recruited adults who smoked combustible cigarettes at enrolment (excluding pregnant people) and randomised them to approved pharmacotherapies and technologies used for smoking cessation worldwide (varenicline, cytisine, nortriptyline, bupropion, nicotine replacement therapy (NRT) and e-cigarettes) versus no pharmacological intervention, placebo (control) or another approved pharmacotherapy. Studies providing co-interventions (e.g. behavioural support) were eligible if the co-intervention was provided equally to study arms. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening, data extraction and risk of bias (RoB) assessment (using the RoB 1 tool). Primary outcome measures were smoking cessation at six months or longer, and the number of people reporting serious adverse events (SAEs). We also measured withdrawals due to treatment. We used Bayesian component network meta-analyses (cNMA) to examine intervention type, delivery mode, dose, duration, timing in relation to quit day and tapering of nicotine dose, using odds ratios (OR) and 95% credibility intervals (CrIs). We calculated an effect estimate for combination NRT using an additive model. We evaluated the influence of population and study characteristics, provision of behavioural support and control arm rates using meta-regression. We evaluated certainty using GRADE. MAIN RESULTS: Of our 332 eligible RCTs, 319 (835 study arms, 157,179 participants) provided sufficient data to be included in our cNMA. Of these, we judged 51 to be at low risk of bias overall, 104 at high risk and 164 at unclear risk, and 118 reported pharmaceutical or e-cigarette/tobacco industry funding. Removing studies at high risk of bias did not change our interpretation of the results. Benefits We found high-certainty evidence that nicotine e-cigarettes (OR 2.37, 95% CrI 1.73 to 3.24; 16 RCTs, 3828 participants), varenicline (OR 2.33, 95% CrI 2.02 to 2.68; 67 RCTs, 16,430 participants) and cytisine (OR 2.21, 95% CrI 1.66 to 2.97; 7 RCTs, 3848 participants) were associated with higher quit rates than control. In absolute terms, this might lead to an additional eight (95% CrI 4 to 13), eight (95% CrI 6 to 10) and seven additional quitters per 100 (95% CrI 4 to 12), respectively. These interventions appeared to be more effective than the other interventions apart from combination NRT (patch and a fast-acting form of NRT), which had a lower point estimate (calculated additive effect) but overlapping 95% CrIs (OR 1.93, 95% CrI 1.61 to 2.34). There was also high-certainty evidence that nicotine patch alone (OR 1.37, 95% CrI 1.20 to 1.56; 105 RCTs, 37,319 participants), fast-acting NRT alone (OR 1.41, 95% CrI 1.29 to 1.55; 120 RCTs, 31,756 participants) and bupropion (OR 1.43, 95% CrI 1.26 to 1.62; 71 RCTs, 14,759 participants) were more effective than control, resulting in two (95% CrI 1 to 3), three (95% CrI 2 to 3) and three (95% CrI 2 to 4) additional quitters per 100 respectively. Nortriptyline is probably associated with higher quit rates than control (OR 1.35, 95% CrI 1.02 to 1.81; 10 RCTs, 1290 participants; moderate-certainty evidence), resulting in two (CrI 0 to 5) additional quitters per 100. Non-nicotine/placebo e-cigarettes (OR 1.16, 95% CrI 0.74 to 1.80; 8 RCTs, 1094 participants; low-certainty evidence), equating to one additional quitter (95% CrI -2 to 5), had point estimates favouring the intervention over control, but CrIs encompassed the potential for no difference and harm. There was low-certainty evidence that tapering the dose of NRT prior to stopping treatment may improve effectiveness; however, 95% CrIs also incorporated the null (OR 1.14, 95% CrI 1.00 to 1.29; 111 RCTs, 33,156 participants). This might lead to an additional one quitter per 100 (95% CrI 0 to 2). Harms There were insufficient data to include nortriptyline and non-nicotine EC in the final SAE model. Overall rates of SAEs for the remaining treatments were low (average 3%). Low-certainty evidence did not show a clear difference in the number of people reporting SAEs for nicotine e-cigarettes, varenicline, cytisine or NRT when compared to no pharmacotherapy/e-cigarettes or placebo. Bupropion may slightly increase rates of SAEs, although the CrI also incorporated no difference (moderate certainty). In absolute terms bupropion may cause one more person in 100 to experience an SAE (95% CrI 0 to 2). AUTHORS' CONCLUSIONS: The most effective interventions were nicotine e-cigarettes, varenicline and cytisine (all high certainty), as well as combination NRT (additive effect, certainty not rated). There was also high-certainty evidence for the effectiveness of nicotine patch, fast-acting NRT and bupropion. Less certain evidence of benefit was present for nortriptyline (moderate certainty), non-nicotine e-cigarettes and tapering of nicotine dose (both low certainty). There was moderate-certainty evidence that bupropion may slightly increase the frequency of SAEs, although there was also the possibility of no increased risk. There was no clear evidence that any other tested interventions increased SAEs. Overall, SAE data were sparse with very low numbers of SAEs, and so further evidence may change our interpretation and certainty. Future studies should report SAEs to strengthen certainty in this outcome. More head-to-head comparisons of the most effective interventions are needed, as are tests of combinations of these. Future work should unify data from behavioural and pharmacological interventions to inform approaches to combined support for smoking cessation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Adulto , Feminino , Humanos , Gravidez , Bupropiona/uso terapêutico , Metanálise em Rede , Nicotina/efeitos adversos , Nortriptilina/uso terapêutico , Vareniclina/uso terapêutico
7.
Thorax ; 77(1): 65-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34580193

RESUMO

BACKGROUND: Conflicting evidence has emerged regarding the relevance of smoking on risk of COVID-19 and its severity. METHODS: We undertook large-scale observational and Mendelian randomisation (MR) analyses using UK Biobank. Most recent smoking status was determined from primary care records (70.8%) and UK Biobank questionnaire data (29.2%). COVID-19 outcomes were derived from Public Health England SARS-CoV-2 testing data, hospital admissions data, and death certificates (until 18 August 2020). Logistic regression was used to estimate associations between smoking status and confirmed SARS-CoV-2 infection, COVID-19-related hospitalisation, and COVID-19-related death. Inverse variance-weighted MR analyses using established genetic instruments for smoking initiation and smoking heaviness were undertaken (reported per SD increase). RESULTS: There were 421 469 eligible participants, 1649 confirmed infections, 968 COVID-19-related hospitalisations and 444 COVID-19-related deaths. Compared with never-smokers, current smokers had higher risks of hospitalisation (OR 1.80, 95% CI 1.26 to 2.29) and mortality (smoking 1-9/day: OR 2.14, 95% CI 0.87 to 5.24; 10-19/day: OR 5.91, 95% CI 3.66 to 9.54; 20+/day: OR 6.11, 95% CI 3.59 to 10.42). In MR analyses of 281 105 White British participants, genetically predicted propensity to initiate smoking was associated with higher risks of infection (OR 1.45, 95% CI 1.10 to 1.91) and hospitalisation (OR 1.60, 95% CI 1.13 to 2.27). Genetically predicted higher number of cigarettes smoked per day was associated with higher risks of all outcomes (infection OR 2.51, 95% CI 1.20 to 5.24; hospitalisation OR 5.08, 95% CI 2.04 to 12.66; and death OR 10.02, 95% CI 2.53 to 39.72). INTERPRETATION: Congruent results from two analytical approaches support a causal effect of smoking on risk of severe COVID-19.


Assuntos
COVID-19 , Bancos de Espécimes Biológicos , Teste para COVID-19 , Inglaterra , Humanos , SARS-CoV-2 , Fumar/efeitos adversos
8.
Prev Med ; 165(Pt B): 107182, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35933001

RESUMO

Moderate certainty evidence supports use of nicotine electronic cigarettes to quit smoking combustible cigarettes. However, there is less certainty regarding how long people continue to use e-cigarettes after smoking cessation attempts. We set out to synthesise data on the proportion of people still using e-cigarettes or other study products at 6 months or longer in studies of e-cigarettes for smoking cessation. We updated Cochrane searches (November 2021). For the first time, we meta-analysed prevalence of continued e-cigarette use among individuals allocated to e-cigarette conditions, and among those individuals who had successfully quit smoking. We updated meta-analyses comparing proportions continuing product use among individuals allocated to use nicotine e-cigarettes and other treatments. We included 19 studies (n = 7787). The pooled prevalence of continued e-cigarette use at 6 months or longer was 54% (95% CI: 46% to 61%, I2 86%, N = 1482) in participants assigned to e-cigarette conditions. Of participants who had quit combustible cigarettes overall 70% were still using e-cigarettes at six months or longer (95% CI: 53% to 82%, I2 73%, N = 215). Heterogeneity in direction of effect precluded meta-analysis comparing long-term use of nicotine e-cigarettes with NRT. More people were using nicotine e-cigarettes at longest follow-up compared to non-nicotine e-cigarettes, but CIs included no difference (risk ratio 1.15, 95% CI: 0.94 to 1.41, n = 601). The levels of continued e-cigarette use observed may reflect the success of e-cigarettes as a quitting tool. Further research is needed to establish drivers of variation in and implications of continued use of e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos , Fumar/epidemiologia , Nicotina/efeitos adversos , Fumar Tabaco
9.
Nicotine Tob Res ; 24(4): 574-580, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792598

RESUMO

INTRODUCTION: Observational and trial evidence conflict on the efficacy of two contrasting behavioral approaches to quitting smoking-gradual and abrupt. Observational data suggest an abrupt approach to quitting is superior to a gradual approach, whilst trials show no difference. One potential explanation is self-selection in observational data, whereby people can choose their quit approach, and those who find it harder to quit may be more likely to choose a gradual quit approach. This study aims to investigate potential explanations for these conflicting findings. AIMS AND METHODS: This study aims to investigate potential explanations for these conflicting findings. We used observational data from a nationally representative sample of adults in England from November 2006 to February 2020 who reported smoking and had made at least one quit attempt in the past year (n = 21 542). We used logistic regression models to assess the association between abrupt versus gradual quit attempts and quit success, adjusting for sociodemographic, smoking, and quit attempt characteristics. FINDINGS: Abrupt, versus gradual, attempts were associated with improved quit success in an unadjusted model (odds ratio = 2.02, 95% CI = 1.86 to 2.19). This association remained after adjusting for a broad range of relevant confounders (odds ratio = 1.75, 95% CI = 1.59 to 1.93). CONCLUSIONS: Among a representative sample of adults who had smoked and made a quit attempt in the past year, there was evidence of an association between abrupt attempts and quit success before and after adjusting for relevant confounders. This suggests that the differences in quit success seen between abrupt and gradual quit attempt types are not completely driven by self-selection in observational data. IMPLICATIONS: We investigated explanations for conflicting findings on the efficacy of gradual versus abrupt approaches to quitting smoking between trial and observational data. Despite adjusting observational data for sociodemographic, smoking, and quit attempt characteristics, an association between abrupt quitting and quit success remained. Therefore, differences in quit success were not completely driven by the self-selection of a gradual approach by people who found it especially difficult to quit or differences in the use of quitting aids. However, characteristics adjusted for were limited by the data available, and future research should continue to investigate the difference in findings across study types to inform cessation support.


Assuntos
Abandono do Hábito de Fumar , Adulto , Inglaterra/epidemiologia , Comportamentos Relacionados com a Saúde , Humanos , Fumar/epidemiologia , Dispositivos para o Abandono do Uso de Tabaco
10.
Cochrane Database Syst Rev ; 4: CD013696, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35420700

RESUMO

BACKGROUND: Mindfulness-based smoking cessation interventions may aid smoking cessation by teaching individuals to pay attention to, and work mindfully with, negative affective states, cravings, and other symptoms of nicotine withdrawal. Types of mindfulness-based interventions include mindfulness training, which involves training in meditation; acceptance and commitment therapy (ACT); distress tolerance training; and yoga. OBJECTIVES: To assess the efficacy of mindfulness-based interventions for smoking cessation among people who smoke, and whether these interventions have an effect on mental health outcomes. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's specialised register, CENTRAL, MEDLINE, Embase, PsycINFO, and trial registries to 15 April 2021. We also employed an automated search strategy, developed as part of the Human Behaviour Change Project, using Microsoft Academic. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and cluster-RCTs that compared a mindfulness-based intervention for smoking cessation with another smoking cessation programme or no treatment, and assessed smoking cessation at six months or longer. We excluded studies that solely recruited pregnant women. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods. We measured smoking cessation at the longest time point, using the most rigorous definition available, on an intention-to-treat basis. We calculated risk ratios (RRs) and 95% confidence intervals (CIs) for smoking cessation for each study, where possible. We grouped eligible studies according to the type of intervention and type of comparator. We carried out meta-analyses where appropriate, using Mantel-Haenszel random-effects models. We summarised mental health outcomes narratively. MAIN RESULTS: We included 21 studies, with 8186 participants. Most recruited adults from the community, and the majority (15 studies) were conducted in the USA. We judged four of the studies to be at low risk of bias, nine at unclear risk, and eight at high risk. Mindfulness-based interventions varied considerably in design and content, as did comparators, therefore, we pooled small groups of relatively comparable studies. We did not detect a clear benefit or harm of mindfulness training interventions on quit rates compared with intensity-matched smoking cessation treatment (RR 0.99, 95% CI 0.67 to 1.46; I2 = 0%; 3 studies, 542 participants; low-certainty evidence), less intensive smoking cessation treatment (RR 1.19, 95% CI 0.65 to 2.19; I2 = 60%; 5 studies, 813 participants; very low-certainty evidence), or no treatment (RR 0.81, 95% CI 0.43 to 1.53; 1 study, 325 participants; low-certainty evidence). In each comparison, the 95% CI encompassed benefit (i.e. higher quit rates), harm (i.e. lower quit rates) and no difference. In one study of mindfulness-based relapse prevention, we did not detect a clear benefit or harm of the intervention over no treatment (RR 1.43, 95% CI 0.56 to 3.67; 86 participants; very low-certainty evidence). We did not detect a clear benefit or harm of ACT on quit rates compared with less intensive behavioural treatments, including nicotine replacement therapy alone (RR 1.27, 95% CI 0.53 to 3.02; 1 study, 102 participants; low-certainty evidence), brief advice (RR 1.27, 95% CI 0.59 to 2.75; 1 study, 144 participants; very low-certainty evidence), or less intensive ACT (RR 1.00, 95% CI 0.50 to 2.01; 1 study, 100 participants; low-certainty evidence). There was a high level of heterogeneity (I2 = 82%) across studies comparing ACT with intensity-matched smoking cessation treatments, meaning it was not appropriate to report a pooled result. We did not detect a clear benefit or harm of distress tolerance training on quit rates compared with intensity-matched smoking cessation treatment (RR 0.87, 95% CI 0.26 to 2.98; 1 study, 69 participants; low-certainty evidence) or less intensive smoking cessation treatment (RR 1.63, 95% CI 0.33 to 8.08; 1 study, 49 participants; low-certainty evidence). We did not detect a clear benefit or harm of yoga on quit rates compared with intensity-matched smoking cessation treatment (RR 1.44, 95% CI 0.40 to 5.16; 1 study, 55 participants; very low-certainty evidence). Excluding studies at high risk of bias did not substantially alter the results, nor did using complete case data as opposed to using data from all participants randomised. Nine studies reported on changes in mental health and well-being, including depression, anxiety, perceived stress, and negative and positive affect. Variation in measures and methodological differences between studies meant we could not meta-analyse these data. One study found a greater reduction in perceived stress in participants who received a face-to-face mindfulness training programme versus an intensity-matched programme. However, the remaining eight studies found no clinically meaningful differences in mental health and well-being between participants who received mindfulness-based treatments and participants who received another treatment or no treatment (very low-certainty evidence). AUTHORS' CONCLUSIONS: We did not detect a clear benefit of mindfulness-based smoking cessation interventions for increasing smoking quit rates or changing mental health and well-being. This was the case when compared with intensity-matched smoking cessation treatment, less intensive smoking cessation treatment, or no treatment. However, the evidence was of low and very low certainty due to risk of bias, inconsistency, and imprecision, meaning future evidence may very likely change our interpretation of the results. Further RCTs of mindfulness-based interventions for smoking cessation compared with active comparators are needed. There is also a need for more consistent reporting of mental health and well-being outcomes in studies of mindfulness-based interventions for smoking cessation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Atenção Plena , Abandono do Hábito de Fumar , Adulto , Feminino , Humanos , Nicotina , Abandono do Hábito de Fumar/métodos , Dispositivos para o Abandono do Uso de Tabaco
11.
Cochrane Database Syst Rev ; 8: CD014936, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938889

RESUMO

BACKGROUND: Smoking is a leading cause of cardiovascular disease (CVD), particularly coronary heart disease (CHD). However, quitting smoking may prevent secondary CVD events in people already diagnosed with CHD.  OBJECTIVES: To examine the impact of smoking cessation on death from CVD and major adverse cardiovascular events (MACE), in people with incident CHD. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialised Register, CENTRAL, MEDLINE, Embase, Cumulative Index to Nursing and Allied Health Literature, and the trials registries clinicaltrials.gov and the International Clinical Trials Registry Platform. We ran all searches from database inception to 15 April 2021.  SELECTION CRITERIA: We included cohort studies, and both cluster- and individually randomised controlled trials of at least six months' duration. We treated all included studies as cohort studies and analysed them by smoking status at follow-up. Eligible studies had to recruit adults (> 18 years) with diagnosed CHD and who smoked tobacco at diagnosis, and assess whether they quit or continued smoking during the study. Studies had to measure at least one of our included outcomes with at least six months' follow-up. Our primary outcomes were death from CVD and MACE. Secondary outcomes included all-cause mortality, non-fatal myocardial infarction, non-fatal stroke, new-onset angina and change in quality of life.  DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction.  We assessed the risk of bias for the primary outcomes using the ROBINS-I tool. We compared the incidence of death from CVD and of MACE (primary outcomes) between participants who quit smoking versus those who continued to smoke for each included study that reported these outcomes. We also assessed differences in all-cause mortality, incidence of non-fatal myocardial infarction, incidence of non-fatal stroke and new onset angina. We calculated hazard ratios (HRs) and 95% confidence intervals (95% CI). For our outcome, change in quality of life, we calculated the pooled standardised mean difference (SMD) and 95% CI for the difference in change in quality of life from baseline to follow-up between those who had quit smoking and those who had continued to smoke. For all meta-analyses we used a generic inverse variance random-effects model and quantified statistical heterogeneity using the I²statistic. We assessed the certainty of evidence for our primary outcomes using the eight GRADE considerations relevant to non-randomised studies. MAIN RESULTS: We included 68 studies, consisting of 80,702 participants. For both primary outcomes, smoking cessation was associated with a decreased risk compared with continuous smoking: CVD death (HR 0.61, 95% CI 0.49 to 0.75; I² = 62%; 18 studies, 17,982 participants; moderate-certainty evidence) and MACE (HR 0.57, 95% CI 0.45 to 0.71; I² = 84%; 15 studies, 20,290 participants; low-certainty evidence). These findings were robust to our planned sensitivity analyses. Through subgroup analysis, for example comparing adjusted versus non-adjusted estimates, we found no evidence of differences in the effect size. While there was substantial heterogeneity, this was primarily in magnitude rather than the direction of the effect estimates. Overall, we judged 11 (16%) studies to be at moderate risk of bias and 18 (26%) at serious risk, primarily due to possible confounding. There was also some evidence of funnel plot asymmetry for MACE outcomes. For these reasons, we rated our certainty in the estimates for CVD death as moderate and MACE as low.  For our secondary outcomes, smoking cessation was associated with a decreased risk in all-cause mortality (HR 0.60, 95% CI 0.55 to 0.66; I² = 58%; 48 studies, 59,354 participants), non-fatal myocardial infarction (HR 0.64, 95% CI 0.58 to 0.72; I² = 2%; 24 studies, 23,264 participants) and non-fatal stroke (HR 0.70, 95% CI 0.53 to 0.90; I² = 0%; 9 studies, 11,352 participants). As only one study reported new onset of angina, we did not conduct meta-analysis, but this study reported a lower risk in people who stopped smoking. Quitting smoking was not associated with a worsening of quality of life and suggested improvement in quality of life, with the lower bound of the CI also consistent with no difference (SMD 0.12, 95% CI 0.01 to 0.24; I² = 48%; 8 studies, 3182 participants).  AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that smoking cessation is associated with a reduction of approximately one-third in the risk of recurrent cardiovascular disease in people who stop smoking at diagnosis. This association may be causal, based on the link between smoking cessation and restoration of endothelial and platelet function, where dysfunction of both can result in increased likelihood of CVD events.  Our results provide evidence that there is a decreased risk of secondary CVD events in those who quit smoking compared with those who continue, and that there is a suggested improvement in quality of life as a result of quitting smoking. Additional studies that account for confounding, such as use of secondary CVD prevention medication, would strengthen the evidence in this area.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Infarto do Miocárdio , Abandono do Hábito de Fumar , Acidente Vascular Cerebral , Adulto , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Doença das Coronárias/epidemiologia , Doença das Coronárias/prevenção & controle , Humanos , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/prevenção & controle , Qualidade de Vida , Prevenção Secundária , Abandono do Hábito de Fumar/métodos , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/prevenção & controle
12.
Cochrane Database Syst Rev ; 11: CD010216, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36384212

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, although some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit smoking, and if they are safe to use for this purpose. This is a review update conducted as part of a living systematic review. OBJECTIVES: To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke tobacco achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 July 2022, and reference-checked and contacted study authors.  SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials, in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. Studies had to report abstinence from cigarettes at six months or longer or data on safety markers at one week or longer, or both. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included the proportion of people still using study product (EC or pharmacotherapy) at six or more months after randomization or starting EC use, changes in carbon monoxide (CO), blood pressure (BP), heart rate, arterial oxygen saturation, lung function, and levels of carcinogens or toxicants, or both. We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in meta-analyses. MAIN RESULTS: We included 78 completed studies, representing 22,052 participants, of which 40 were RCTs. Seventeen of the 78 included studies were new to this review update. Of the included studies, we rated ten (all but one contributing to our main comparisons) at low risk of bias overall, 50 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. There was high certainty that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (RR 1.63, 95% CI 1.30 to 2.04; I2 = 10%; 6 studies, 2378 participants). In absolute terms, this might translate to an additional four quitters per 100 (95% CI 2 to 6). There was moderate-certainty evidence (limited by imprecision) that the rate of occurrence of AEs was similar between groups (RR 1.02, 95% CI 0.88 to 1.19; I2 = 0%; 4 studies, 1702 participants). SAEs were rare, but there was insufficient evidence to determine whether rates differed between groups due to very serious imprecision (RR 1.12, 95% CI 0.82 to 1.52; I2 = 34%; 5 studies, 2411 participants). There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.94, 95% CI 1.21 to 3.13; I2 = 0%; 5 studies, 1447 participants). In absolute terms, this might lead to an additional seven quitters per 100 (95% CI 2 to 16). There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 5 studies, 1840 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 1.00, 95% CI 0.56 to 1.79; I2 = 0%; 8 studies, 1272 participants). Compared to behavioural support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.66, 95% CI 1.52 to 4.65; I2 = 0%; 7 studies, 3126 participants). In absolute terms, this represents an additional two quitters per 100 (95% CI 1 to 3). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was some evidence that (non-serious) AEs were more common in people randomized to nicotine EC (RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants) and, again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 1.03, 95% CI 0.54 to 1.97; I2 = 38%; 9 studies, 1993 participants).  Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued EC use. Very few studies reported data on other outcomes or comparisons, hence evidence for these is limited, with CIs often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is high-certainty evidence that ECs with nicotine increase quit rates compared to NRT and moderate-certainty evidence that they increase quit rates compared to ECs without nicotine. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the effect size. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, with no difference in AEs between nicotine and non-nicotine ECs nor between nicotine ECs and NRT. Overall incidence of SAEs was low across all study arms. We did not detect evidence of serious harm from nicotine EC, but longest follow-up was two years and the number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates, but further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this review is a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos , Abandono do Hábito de Fumar/métodos , Dispositivos para o Abandono do Uso de Tabaco , Agonistas Nicotínicos/uso terapêutico , Revisões Sistemáticas como Assunto , Nicotina/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Cochrane Database Syst Rev ; 9: CD011556, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34693994

RESUMO

BACKGROUND: Primary care is an important setting in which to treat tobacco addiction. However, the rates at which providers address smoking cessation and the success of that support vary. Strategies can be implemented to improve and increase the delivery of smoking cessation support (e.g. through provider training), and to increase the amount and breadth of support given to people who smoke (e.g. through additional counseling or tailored printed materials). OBJECTIVES: To assess the effectiveness of strategies intended to increase the success of smoking cessation interventions in primary care settings. To assess whether any effect that these interventions have on smoking cessation may be due to increased implementation by healthcare providers. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and trial registries to 10 September 2020. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and cluster-RCTs (cRCTs) carried out in primary care, including non-pregnant adults. Studies investigated a strategy or strategies to improve the implementation or success of smoking cessation treatment in primary care. These strategies could include interventions designed to increase or enhance the quality of existing support, or smoking cessation interventions offered in addition to standard care (adjunctive interventions). Intervention strategies had to be tested in addition to and in comparison with standard care, or in addition to other active intervention strategies if the effect of an individual strategy could be isolated. Standard care typically incorporates physician-delivered brief behavioral support, and an offer of smoking cessation medication, but differs across studies. Studies had to measure smoking abstinence at six months' follow-up or longer. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods. Our primary outcome - smoking abstinence - was measured using the most rigorous intention-to-treat definition available. We also extracted outcome data for quit attempts, and the following markers of healthcare provider performance: asking about smoking status; advising on cessation; assessment of participant readiness to quit; assisting with cessation; arranging follow-up for smoking participants. Where more than one study investigated the same strategy or set of strategies, and measured the same outcome, we conducted meta-analyses using Mantel-Haenszel random-effects methods to generate pooled risk ratios (RRs) and 95% confidence intervals (CIs). MAIN RESULTS: We included 81 RCTs and cRCTs, involving 112,159 participants. Fourteen were rated at low risk of bias, 44 at high risk, and the remainder at unclear risk. We identified moderate-certainty evidence, limited by inconsistency, that the provision of adjunctive counseling by a health professional other than the physician (RR 1.31, 95% CI 1.10 to 1.55; I2 = 44%; 22 studies, 18,150 participants), and provision of cost-free medications (RR 1.36, 95% CI 1.05 to 1.76; I2 = 63%; 10 studies,7560 participants) increased smoking quit rates in primary care. There was also moderate-certainty evidence, limited by risk of bias, that the addition of tailored print materials to standard smoking cessation treatment increased the number of people who had successfully stopped smoking at six months' follow-up or more (RR 1.29, 95% CI 1.04 to 1.59; I2 = 37%; 6 studies, 15,978 participants). There was no clear evidence that providing participants who smoked with biomedical risk feedback increased their likelihood of quitting (RR 1.07, 95% CI 0.81 to 1.41; I2 = 40%; 7 studies, 3491 participants), or that provider smoking cessation training (RR 1.10, 95% CI 0.85 to 1.41; I2 = 66%; 7 studies, 13,685 participants) or provider incentives (RR 1.14, 95% CI 0.97 to 1.34; I2 = 0%; 2 studies, 2454 participants) increased smoking abstinence rates. However, in assessing the former two strategies we judged the evidence to be of low certainty and in assessing the latter strategies it was of very low certainty. We downgraded the evidence due to imprecision, inconsistency and risk of bias across these comparisons. There was some indication that provider training increased the delivery of smoking cessation support, along with the provision of adjunctive counseling and cost-free medications. However, our secondary outcomes were not measured consistently, and in many cases analyses were subject to substantial statistical heterogeneity, imprecision, or both, making it difficult to draw conclusions. Thirty-four studies investigated multicomponent interventions to improve smoking cessation rates. There was substantial variation in the combinations of strategies tested, and the resulting individual study effect estimates, precluding meta-analyses in most cases. Meta-analyses provided some evidence that adjunctive counseling combined with either cost-free medications or provider training enhanced quit rates when compared with standard care alone. However, analyses were limited by small numbers of events, high statistical heterogeneity, and studies at high risk of bias. Analyses looking at the effects of combining provider training with flow sheets to aid physician decision-making, and with outreach facilitation, found no clear evidence that these combinations increased quit rates; however, analyses were limited by imprecision, and there was some indication that these approaches did improve some forms of provider implementation. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that providing adjunctive counseling by an allied health professional, cost-free smoking cessation medications, and tailored printed materials as part of smoking cessation support in primary care can increase the number of people who achieve smoking cessation. There is no clear evidence that providing participants with biomedical risk feedback, or primary care providers with training or incentives to provide smoking cessation support enhance quit rates. However, we rated this evidence as of low or very low certainty, and so conclusions are likely to change as further evidence becomes available. Most of the studies in this review evaluated smoking cessation interventions that had already been extensively tested in the general population. Further studies should assess strategies designed to optimize the delivery of those interventions already known to be effective within the primary care setting. Such studies should be cluster-randomized to account for the implications of implementation in this particular setting. Due to substantial variation between studies in this review, identifying optimal characteristics of multicomponent interventions to improve the delivery of smoking cessation treatment was challenging. Future research could use component network meta-analysis to investigate this further.


Assuntos
Abandono do Hábito de Fumar , Adulto , Humanos , Atenção Primária à Saúde , Ensaios Clínicos Controlados Aleatórios como Assunto , Fumar/epidemiologia , Abandono do Hábito de Fumar/métodos , Prevenção do Hábito de Fumar , Dispositivos para o Abandono do Uso de Tabaco
14.
Cochrane Database Syst Rev ; 1: CD013229, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33411338

RESUMO

BACKGROUND: Smoking is a leading cause of disease and death worldwide. In people who smoke, quitting smoking can reverse much of the damage. Many people use behavioural interventions to help them quit smoking; these interventions can vary substantially in their content and effectiveness. OBJECTIVES: To summarise the evidence from Cochrane Reviews that assessed the effect of behavioural interventions designed to support smoking cessation attempts and to conduct a network meta-analysis to determine how modes of delivery; person delivering the intervention; and the nature, focus, and intensity of behavioural interventions for smoking cessation influence the likelihood of achieving abstinence six months after attempting to stop smoking; and whether the effects of behavioural interventions depend upon other characteristics, including population, setting, and the provision of pharmacotherapy. To summarise the availability and principal findings of economic evaluations of behavioural interventions for smoking cessation, in terms of comparative costs and cost-effectiveness, in the form of a brief economic commentary. METHODS: This work comprises two main elements. 1. We conducted a Cochrane Overview of reviews following standard Cochrane methods. We identified Cochrane Reviews of behavioural interventions (including all non-pharmacological interventions, e.g. counselling, exercise, hypnotherapy, self-help materials) for smoking cessation by searching the Cochrane Library in July 2020. We evaluated the methodological quality of reviews using AMSTAR 2 and synthesised data from the reviews narratively. 2. We used the included reviews to identify randomised controlled trials of behavioural interventions for smoking cessation compared with other behavioural interventions or no intervention for smoking cessation. To be included, studies had to include adult smokers and measure smoking abstinence at six months or longer. Screening, data extraction, and risk of bias assessment followed standard Cochrane methods. We synthesised data using Bayesian component network meta-analysis (CNMA), examining the effects of 38 different components compared to minimal intervention. Components included behavioural and motivational elements, intervention providers, delivery modes, nature, focus, and intensity of the behavioural intervention. We used component network meta-regression (CNMR) to evaluate the influence of population characteristics, provision of pharmacotherapy, and intervention intensity on the component effects. We evaluated certainty of the evidence using GRADE domains. We assumed an additive effect for individual components. MAIN RESULTS: We included 33 Cochrane Reviews, from which 312 randomised controlled trials, representing 250,563 participants and 845 distinct study arms, met the criteria for inclusion in our component network meta-analysis. This represented 437 different combinations of components. Of the 33 reviews, confidence in review findings was high in four reviews and moderate in nine reviews, as measured by the AMSTAR 2 critical appraisal tool. The remaining 20 reviews were low or critically low due to one or more critical weaknesses, most commonly inadequate investigation or discussion (or both) of the impact of publication bias. Of note, the critical weaknesses identified did not affect the searching, screening, or data extraction elements of the review process, which have direct bearing on our CNMA. Of the included studies, 125/312 were at low risk of bias overall, 50 were at high risk of bias, and the remainder were at unclear risk. Analyses from the contributing reviews and from our CNMA showed behavioural interventions for smoking cessation can increase quit rates, but effectiveness varies on characteristics of the support provided. There was high-certainty evidence of benefit for the provision of counselling (odds ratio (OR) 1.44, 95% credibility interval (CrI) 1.22 to 1.70, 194 studies, n = 72,273) and guaranteed financial incentives (OR 1.46, 95% CrI 1.15 to 1.85, 19 studies, n = 8877). Evidence of benefit remained when removing studies at high risk of bias. These findings were consistent with pair-wise meta-analyses from contributing reviews. There was moderate-certainty evidence of benefit for interventions delivered via text message (downgraded due to unexplained statistical heterogeneity in pair-wise comparison), and for the following components where point estimates suggested benefit but CrIs incorporated no clinically significant difference: individual tailoring; intervention content including motivational components; intervention content focused on how to quit. The remaining intervention components had low-to very low-certainty evidence, with the main issues being imprecision and risk of bias. There was no evidence to suggest an increase in harms in groups receiving behavioural support for smoking cessation. Intervention effects were not changed by adjusting for population characteristics, but data were limited. Increasing intensity of behavioural support, as measured through the number of contacts, duration of each contact, and programme length, had point estimates associated with modestly increased chances of quitting, but CrIs included no difference. The effect of behavioural support for smoking cessation appeared slightly less pronounced when people were already receiving smoking cessation pharmacotherapies. AUTHORS' CONCLUSIONS: Behavioural support for smoking cessation can increase quit rates at six months or longer, with no evidence that support increases harms. This is the case whether or not smoking cessation pharmacotherapy is also provided, but the effect is slightly more pronounced in the absence of pharmacotherapy. Evidence of benefit is strongest for the provision of any form of counselling, and guaranteed financial incentives. Evidence suggested possible benefit but the need of further studies to evaluate: individual tailoring; delivery via text message, email, and audio recording; delivery by lay health advisor; and intervention content with motivational components and a focus on how to quit. We identified 23 economic evaluations; evidence did not consistently suggest one type of behavioural intervention for smoking cessation was more cost-effective than another. Future reviews should fully consider publication bias. Tools to investigate publication bias and to evaluate certainty in CNMA are needed.


ANTECEDENTES: El tabaquismo es una causa principal de enfermedad y muerte en todo el mundo. En las personas que fuman, dejar de fumar puede revertir gran parte del daño. Muchas personas utilizan intervenciones conductuales para ayudarles a dejar de fumar y estas intervenciones pueden variar considerablemente en contenido y efectividad. OBJETIVOS: Resumir la evidencia de las revisiones Cochrane que evaluaron el efecto de las intervenciones conductuales diseñadas para apoyar los intentos de abandono del hábito de fumar y realizar un metanálisis en red para determinar cómo las modalidades de prestación; la persona que administra la intervención; y la naturaleza, el enfoque y la intensidad de las intervenciones conductuales para el abandono del hábito de fumar influyen en la probabilidad de lograr la abstinencia seis meses después de intentar dejar de fumar; y si los efectos de las intervenciones conductuales dependen de otras características, como la población, el contexto y la administración de farmacoterapia. Resumir la disponibilidad y los hallazgos principales de las evaluaciones económicas de intervenciones conductuales para dejar de fumar, en términos de costes y coste­efectividad, mediante un breve comentario económico. MÉTODOS: Este artículo comprende dos elementos principales. 1. Se realizó una revisión global Cochrane de revisiones según los métodos estándar de Cochrane. Mediante una búsqueda en la Biblioteca Cochrane en julio de 2020 se identificaron las revisiones Cochrane de intervenciones conductuales (incluidas todas las intervenciones no farmacológicas, p.ej., orientación, ejercicio, hipnoterapia, materiales de autoayuda) para el abandono del hábito de fumar. La calidad metodológica de las revisiones se evaluó mediante AMSTAR 2 y los datos de las revisiones se resumieron de manera narrativa. 2. Las revisiones incluidas se utilizaron para identificar los ensayos controlados aleatorizados de intervenciones conductuales para el abandono del hábito de fumar en comparación con otras intervenciones conductuales o ninguna intervención para el abandono del hábito de fumar. Para ser incluidos, los estudios debían incluir a fumadores adultos y medir la abstinencia de fumar a los seis meses o más. La selección, la extracción de los datos y la evaluación del riesgo de sesgo siguieron los métodos Cochrane estándar. Los datos se resumieron mediante un metanálisis en red de componentes (MARC) bayesiano, y se examinaron los efectos de 38 componentes diferentes en comparación con una intervención mínima. Los componentes incluyeron elementos conductuales y motivacionales, proveedores de la intervención, modos de administración, naturaleza, enfoque e intensidad de la intervención conductual. Se utilizó la metarregresión en red de componentes (MRRC) para evaluar la influencia de las características de la población, la administración de farmacoterapia y la intensidad de la intervención sobre los efectos de los componentes. La certeza de la evidencia se evaluó mediante los dominios de GRADE. Se presupuso un efecto aditivo para los componentes individuales. RESULTADOS PRINCIPALES: Se incluyeron 33 revisiones Cochrane, de las cuales 312 ensayos controlados aleatorizados, que representaban a 250 563 participantes y 845 grupos de estudio distintos, cumplieron los criterios para su inclusión en el metanálisis en red de componentes. Esto representó 437 combinaciones diferentes de componentes. De las 33 revisiones, la confianza en los hallazgos de la revisión fue alta en cuatro y moderada en nueve, medida con la herramienta de lectura crítica AMSTAR 2. Las 20 revisiones restantes tuvieron una confianza baja o críticamente baja debido a una o más deficiencias graves, las más habituales fueron una investigación o discusión (o ambas) insuficiente acerca del impacto del sesgo de publicación. Cabe señalar que las debilidades críticas identificadas no afectaron los elementos de la búsqueda, la selección o la extracción de los datos del proceso de revisión, que mantienen una relación directa en este MARC. Entre los estudios incluidos, 125/312 tuvieron un riesgo general de sesgo bajo, 50 un riesgo de sesgo alto y el resto un riesgo de sesgo poco claro. Los análisis de las revisiones contribuyentes y de este MARC mostraron que las intervenciones conductuales para dejar de fumar pueden aumentar las tasas de abandono del hábito, pero la efectividad varía según las características del apoyo proporcionado. Hubo evidencia de certeza alta de un efecto beneficioso de la prestación de orientación (odds ratio [OR] 1,44; intervalo de credibilidad [ICr] del 95%: 1,22 a 1,70, 194 estudios, n = 72 273) y de los incentivos económicos garantizados (OR 1,46; ICr del 95% 1,15 a 1,85, 19 estudios, n = 8877). La evidencia de un efecto beneficioso se mantuvo cuando se eliminaron los estudios con alto riesgo de sesgo. Estos hallazgos fueron concordantes con los metanálisis pareados de las revisiones contribuyentes. Hubo evidencia de certeza moderada de un efecto beneficioso de las intervenciones administradas a través de mensajes de texto (la certeza se disminuyó debido a una heterogeneidad estadística inexplicada en la comparación pareada), y de los siguientes componentes en los que las estimaciones puntuales indicaron un efecto beneficioso pero los ICr no incorporaron una diferencia clínicamente significativa: personalización; contenido de la intervención con componentes motivacionales; contenido de la intervención centrado en cómo dejar de fumar. Los otros componentes de la intervención tuvieron evidencia de certeza muy baja a baja, y sus problemas principales fueron la imprecisión y el riesgo de sesgo. No hubo evidencia que indicara un aumento de los efectos perjudiciales en los grupos que recibieron apoyo conductual para dejar de fumar. Los efectos de la intervención no cambiaron al ajustar las características de la población, pero los datos fueron limitados. El aumento de la intensidad del apoyo conductual, medido a través del número de contactos, la duración de cada contacto y la duración del programa, tuvo estimaciones puntuales asociadas con un modesto aumento de las posibilidades de dejar de fumar, pero los ICr no incluyeron una diferencia. El efecto del apoyo conductual para dejar de fumar pareció ser ligeramente menos pronunciado cuando las personas ya recibían farmacoterapias para dejar de fumar. CONCLUSIONES DE LOS AUTORES: El apoyo conductual para dejar de fumar puede aumentar las tasas de abandono a los seis meses o más, sin evidencia de que este apoyo aumente los efectos perjudiciales. Esto es así tanto si se proporciona una farmacoterapia para dejar de fumar como si no, pero el efecto es ligeramente más pronunciado sin farmacoterapia. La evidencia de un efecto beneficioso es más sólida para la prestación de cualquier tipo de orientación y de incentivos económicos garantizados. La evidencia indicó un posible efecto beneficioso, pero la necesidad de realizar más estudios para evaluar: la personalización; la administración mediante mensajes de texto, correos electrónicos y grabaciones de audio; la administración por parte de un asesor de salud no profesional; y el contenido de la intervención con componentes motivacionales y centrada en cómo dejar de fumar. Se identificaron 23 evaluaciones económicas; la evidencia no indicó de manera homogénea que un tipo de intervención conductual para el abandono del hábito de fumar fuera más coste­efectiva que otra. Las revisiones futuras deberían examinar a fondo el sesgo de publicación. Se necesitan herramientas para investigar el sesgo de publicación y evaluar la certeza en MARC.


Assuntos
Terapia Comportamental/métodos , Metanálise em Rede , Abandono do Hábito de Fumar/métodos , Revisões Sistemáticas como Assunto , Adulto , Teorema de Bayes , Viés , Aconselhamento , Exercício Físico , Feminino , Humanos , Hipnose , Masculino , Pessoa de Meia-Idade , Viés de Publicação/estatística & dados numéricos , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Autocuidado , Fatores de Tempo , Adulto Jovem
15.
Cochrane Database Syst Rev ; 9: CD010216, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519354

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, but some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This is an update conducted as part of a living systematic review. OBJECTIVES: To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke tobacco achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 May 2021, and reference-checked and contacted study authors. We screened abstracts from the Society for Research on Nicotine and Tobacco (SRNT) 2021 Annual Meeting.   SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials, in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. Studies had to report abstinence from cigarettes at six months or longer or data on safety markers at one week or longer, or both. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included the proportion of people still using study product (EC or pharmacotherapy) at six or more months after randomization or starting EC use, changes in carbon monoxide (CO), blood pressure (BP), heart rate, arterial oxygen saturation, lung function, and levels of carcinogens or toxicants or both. We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in meta-analyses. MAIN RESULTS: We included 61 completed studies, representing 16,759 participants, of which 34 were RCTs. Five of the 61 included studies were new to this review update. Of the included studies, we rated seven (all contributing to our main comparisons) at low risk of bias overall, 42 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.53, 95% confidence interval (CI) 1.21 to 1.93; I2 = 0%; 4 studies, 1924 participants). In absolute terms, this might translate to an additional three quitters per 100 (95% CI 1 to 6). There was low-certainty evidence (limited by very serious imprecision) that the rate of occurrence of AEs was similar (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs were rare, but there was insufficient evidence to determine whether rates differed between groups due to very serious imprecision (RR 1.30, 95% CI 0.89 to 1.90: I2 = 0; 4 studies, 1424 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.94, 95% CI 1.21 to 3.13; I2 = 0%; 5 studies, 1447 participants). In absolute terms, this might lead to an additional seven quitters per 100 (95% CI 2 to 16). There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 3 studies, 601 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 1.06, 95% CI 0.47 to 2.38; I2 = 0; 5 studies, 792 participants). Compared to behavioural support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.61, 95% CI 1.44 to 4.74; I2 = 0%; 6 studies, 2886 participants). In absolute terms this represents an additional six quitters per 100 (95% CI 2 to 15). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was some evidence that non-serious AEs were more common in people randomized to nicotine EC (RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants), and again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 1.51, 95% CI 0.70 to 3.24; I2 = 0%; 7 studies, 1303 participants).  Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued use. Very few studies reported data on other outcomes or comparisons, hence evidence for these is limited, with CIs often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to NRT and compared to ECs without nicotine. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the effect size. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, with no difference in AEs between nicotine and non-nicotine ECs. Overall incidence of SAEs was low across all study arms. We did not detect  evidence of harm from nicotine EC, but longest follow-up was two years and the  number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates, but further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this review is now a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos , Agonistas Nicotínicos , Revisões Sistemáticas como Assunto , Dispositivos para o Abandono do Uso de Tabaco
16.
Cochrane Database Syst Rev ; 4: CD010216, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33913154

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, but some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This is an update of a review first published in 2014. OBJECTIVES: To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 February 2021, together with reference-checking and contact with study authors. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. To be included, studies had to report abstinence from cigarettes at six months or longer and/or data on adverse events (AEs) or other markers of safety at one week or longer. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included changes in carbon monoxide, blood pressure, heart rate, blood oxygen saturation, lung function, and levels of known carcinogens/toxicants. We used a fixed-effect Mantel-Haenszel model to calculate the risk ratio (RR) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data from these studies in meta-analyses. MAIN RESULTS: We included 56 completed studies, representing 12,804 participants, of which 29 were RCTs. Six of the 56 included studies were new to this review update. Of the included studies, we rated five (all contributing to our main comparisons) at low risk of bias overall, 41 at high risk overall (including the 25 non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.69, 95% confidence interval (CI) 1.25 to 2.27; I2 = 0%; 3 studies, 1498 participants). In absolute terms, this might translate to an additional four successful quitters per 100 (95% CI 2 to 8). There was low-certainty evidence (limited by very serious imprecision) that the rate of occurrence of AEs was similar) (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs occurred rarely, with no evidence that their frequency differed between nicotine EC and NRT, but very serious imprecision led to low certainty in this finding (RR 1.37, 95% CI 0.77 to 2.41: I2 = n/a; 2 studies, 727 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.70, 95% CI 1.03 to 2.81; I2 = 0%; 4 studies, 1057 participants). In absolute terms, this might again lead to an additional four successful quitters per 100 (95% CI 0 to 11). These trials mainly used older EC with relatively low nicotine delivery. There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 3 studies, 601 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 0.60, 95% CI 0.15 to 2.44; I2 = n/a; 4 studies, 494 participants). Compared to behavioral support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.70, 95% CI 1.39 to 5.26; I2 = 0%; 5 studies, 2561 participants). In absolute terms this represents an increase of seven per 100 (95% CI 2 to 17). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was no evidence that the rate of SAEs differed, but some evidence that non-serious AEs were more common in people randomized to nicotine EC (AEs: RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants; SAEs: RR 1.17, 95% CI 0.33 to 4.09; I2 = 5%; 6 studies, 1011 participants, very low certainty). Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued use. Very few studies reported data on other outcomes or comparisons and hence evidence for these is limited, with confidence intervals often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to ECs without nicotine and compared to NRT. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the size of effect, particularly when using modern EC products. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, though evidence indicated no difference in AEs between nicotine and non-nicotine ECs. Overall incidence of SAEs was low across all study arms. We did not detect any clear evidence of harm from nicotine EC, but longest follow-up was two years and the overall number of studies was small. The evidence is limited mainly by imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information, this review is now a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Agonistas Nicotínicos , Abandono do Hábito de Fumar/métodos , Prevenção do Hábito de Fumar , Viés , Monóxido de Carbono/análise , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Avaliação de Resultados em Cuidados de Saúde , Viés de Publicação , Ensaios Clínicos Controlados Aleatórios como Assunto , Fumar/epidemiologia , Abandono do Hábito de Fumar/estatística & dados numéricos , Dispositivos para o Abandono do Uso de Tabaco , Vaping
17.
Cochrane Database Syst Rev ; 3: CD013522, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33687070

RESUMO

BACKGROUND: There is a common perception that smoking generally helps people to manage stress, and may be a form of 'self-medication' in people with mental health conditions. However, there are biologically plausible reasons why smoking may worsen mental health through neuroadaptations arising from chronic smoking, leading to frequent nicotine withdrawal symptoms (e.g. anxiety, depression, irritability), in which case smoking cessation may help to improve rather than worsen mental health. OBJECTIVES: To examine the association between tobacco smoking cessation and change in mental health. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialised Register, Cochrane Central Register of Controlled Trials, MEDLINE, Embase, PsycINFO, and the trial registries clinicaltrials.gov and the International Clinical Trials Registry Platform, from 14 April 2012 to 07 January 2020. These were updated searches of a previously-conducted non-Cochrane review where searches were conducted from database inception to 13 April 2012.  SELECTION CRITERIA: We included controlled before-after studies, including randomised controlled trials (RCTs) analysed by smoking status at follow-up, and longitudinal cohort studies. In order to be eligible for inclusion studies had to recruit adults who smoked tobacco, and assess whether they quit or continued smoking during the study. They also had to measure a mental health outcome at baseline and at least six weeks later. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcomes were change in depression symptoms, anxiety symptoms or mixed anxiety and depression symptoms between baseline and follow-up. Secondary outcomes  included change in symptoms of stress, psychological quality of life, positive affect, and social impact or social quality of life, as well as new incidence of depression, anxiety, or mixed anxiety and depression disorders. We assessed the risk of bias for the primary outcomes using a modified ROBINS-I tool.  For change in mental health outcomes, we calculated the pooled standardised mean difference (SMD) and 95% confidence interval (95% CI) for the difference in change in mental health from baseline to follow-up between those who had quit smoking and those who had continued to smoke. For the incidence of psychological disorders, we calculated odds ratios (ORs) and 95% CIs. For all meta-analyses we used a generic inverse variance random-effects model and quantified statistical heterogeneity using I2. We conducted subgroup analyses to investigate any differences in associations between sub-populations, i.e. unselected people with mental illness, people with physical chronic diseases. We assessed the certainty of evidence for our primary outcomes (depression, anxiety, and mixed depression and anxiety) and our secondary social impact outcome using the eight GRADE considerations relevant to non-randomised studies (risk of bias, inconsistency, imprecision, indirectness, publication bias, magnitude of the effect, the influence of all plausible residual confounding, the presence of a dose-response gradient). MAIN RESULTS: We included 102 studies representing over 169,500 participants. Sixty-two of these were identified in the updated search for this review and 40 were included in the original version of the review.  Sixty-three studies provided data on change in mental health, 10 were included in meta-analyses of incidence of mental health disorders, and 31 were synthesised narratively.  For all primary outcomes, smoking cessation was associated with an improvement in mental health symptoms compared with continuing to smoke: anxiety symptoms (SMD -0.28, 95% CI -0.43 to -0.13; 15 studies, 3141 participants; I2 = 69%; low-certainty evidence); depression symptoms: (SMD -0.30, 95% CI -0.39 to -0.21; 34 studies, 7156 participants; I2 = 69%' very low-certainty evidence);  mixed anxiety and depression symptoms (SMD -0.31, 95% CI -0.40 to -0.22; 8 studies, 2829 participants; I2 = 0%; moderate certainty evidence).  These findings were robust to preplanned sensitivity analyses, and subgroup analysis generally did not produce evidence of differences in the effect size among subpopulations or based on methodological characteristics. All studies were deemed to be at serious risk of bias due to possible time-varying confounding, and three studies measuring depression symptoms were judged to be at critical risk of bias overall. There was also some evidence of funnel plot asymmetry. For these reasons, we rated our certainty in the estimates for anxiety as low, for depression as very low, and for mixed anxiety and depression as moderate. For the secondary outcomes, smoking cessation was associated with an improvement in symptoms of stress (SMD -0.19, 95% CI -0.34 to -0.04; 4 studies, 1792 participants; I2 = 50%), positive affect (SMD 0.22, 95% CI 0.11 to 0.33; 13 studies, 4880 participants; I2 = 75%), and psychological quality of life (SMD 0.11, 95% CI 0.06 to 0.16; 19 studies, 18,034 participants; I2 = 42%). There was also evidence that smoking cessation was not associated with a reduction in social quality of life, with the confidence interval incorporating the possibility of a small improvement (SMD 0.03, 95% CI 0.00 to 0.06; 9 studies, 14,673 participants; I2 = 0%). The incidence of new mixed anxiety and depression was lower in people who stopped smoking compared with those who continued (OR 0.76, 95% CI 0.66 to 0.86; 3 studies, 8685 participants; I2 = 57%), as was the incidence of anxiety disorder (OR 0.61, 95% CI 0.34 to 1.12; 2 studies, 2293 participants; I2 = 46%). We deemed it inappropriate to present a pooled estimate for the incidence of new cases of clinical depression, as there was high statistical heterogeneity (I2 = 87%). AUTHORS' CONCLUSIONS: Taken together, these data provide evidence that mental health does not worsen as a result of quitting smoking, and very low- to moderate-certainty evidence that smoking cessation is associated with small to moderate improvements in mental health.  These improvements are seen in both unselected samples and in subpopulations, including people diagnosed with mental health conditions. Additional studies that use more advanced methods to overcome time-varying confounding would strengthen the evidence in this area.


Assuntos
Ansiedade/terapia , Depressão/terapia , Saúde Mental , Abandono do Hábito de Fumar/métodos , Fumar/efeitos adversos , Afeto , Intervalos de Confiança , Estudos Controlados Antes e Depois , Humanos , Incidência , Transtornos Mentais/epidemiologia , Transtornos Mentais/terapia , Pessoa de Meia-Idade , Qualidade de Vida , Fumar/psicologia , Abandono do Hábito de Fumar/psicologia , Interação Social , Estresse Psicológico/terapia , Abandono do Uso de Tabaco/métodos , Abandono do Uso de Tabaco/psicologia
18.
Nicotine Tob Res ; 22(12): 2257-2261, 2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-32609847

RESUMO

INTRODUCTION: Around half of smokers attempt to stop by cutting-down first. Evidence suggests that this results in similar quit rates to abrupt quitting. Evidence for the effectiveness and popularity of different gradual cessation methods is sparse. METHODS: Secondary, exploratory, analyses of a randomized trial of gradual versus abrupt smoking cessation. Gradual participants (N = 342) chose between four methods of cutting-down over 2 weeks: cutting-out the easiest cigarettes first (HR-E); cutting-out the most difficult cigarettes first (HR-D); smoking on an increasing time schedule (SR); and not smoking during particular periods (SFP). Nicotine replacement therapy and behavioral support were provided before and after quit day. We used logistic and linear regression modeling to test whether the method chosen was associated with smoking reduction, quit attempts, and abstinence, while adjusting for potential confounders. RESULTS: Participants were on average 49 years old, smoked 20 cigarettes per day, and had a Fagerstrom Test for Cigarette Dependence score of 6. 14.9% (51/342) chose HR-E, 2.1% (7/342) HR-D, 46.2% (158/342) SFP, and 36.8% (126/342) SR. We found no evidence of adjusted or unadjusted associations between method and successful 75% reduction in cigarette consumption, reduction in percentage cigarettes per day or exhaled carbon monoxide, quit attempts, or abstinence at 4-week or 6-month follow-up. CONCLUSIONS: Future research and practice could focus more heavily on the SR and SFP methods as these appeared notably more popular than HR. There was substantial imprecision in the efficacy data, which should be treated with caution; however, none of the gradual cessation methods showed clear evidence of being more efficacious than others. IMPLICATIONS: There is evidence that people who would like to quit smoking gradually should be supported to do so. However, as this is relatively new thinking and there is large potential for variation in methods, guidance on the best way to offer support is sparse. This article is an exploratory analysis of the popularity and efficacy of various methods in an attempt to move the topic forward and inform the implementation of gradual smoking cessation methods in practice. The identified popularity of some methods over others signposts directions for future research.


Assuntos
Terapia Comportamental , Abandono do Hábito de Fumar/métodos , Fumar/terapia , Dispositivos para o Abandono do Uso de Tabaco/estatística & dados numéricos , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Projetos de Pesquisa , Fumar/epidemiologia , Fumar/psicologia , Reino Unido/epidemiologia
19.
Cochrane Database Syst Rev ; 12: CD013413, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33284989

RESUMO

BACKGROUND: Populations experiencing homelessness have high rates of tobacco use and experience substantial barriers to cessation. Tobacco-caused conditions are among the leading causes of morbidity and mortality among people experiencing homelessness, highlighting an urgent need for interventions to reduce the burden of tobacco use in this population. OBJECTIVES: To assess whether interventions designed to improve access to tobacco cessation interventions for adults experiencing homelessness lead to increased numbers engaging in or receiving treatment, and whether interventions designed to help adults experiencing homelessness to quit tobacco lead to increased tobacco abstinence. To also assess whether tobacco cessation interventions for adults experiencing homelessness affect substance use and mental health. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group Specialized Register, MEDLINE, Embase and PsycINFO for studies using the terms: un-housed*, homeless*, housing instability, smoking cessation, tobacco use disorder, smokeless tobacco. We also searched trial registries to identify unpublished studies. Date of the most recent search: 06 January 2020. SELECTION CRITERIA: We included randomized controlled trials that recruited people experiencing homelessness who used tobacco, and investigated interventions focused on the following: 1) improving access to relevant support services; 2) increasing motivation to quit tobacco use; 3) helping people to achieve abstinence, including but not limited to behavioral support, tobacco cessation pharmacotherapies, contingency management, and text- or app-based interventions; or 4) encouraging transitions to long-term nicotine use that did not involve tobacco. Eligible comparators included no intervention, usual care (as defined by the studies), or another form of active intervention. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods. Tobacco cessation was measured at the longest time point for each study, on an intention-to-treat basis, using the most rigorous definition available. We calculated risk ratios (RRs) and 95% confidence intervals (CIs) for smoking cessation for each study where possible. We grouped eligible studies according to the type of comparison (contingent reinforcement in addition to usual smoking cessation care; more versus less intensive smoking cessation interventions; and multi-issue support versus smoking cessation support only), and carried out meta-analyses where appropriate, using a Mantel-Haenszel random-effects model. We also extracted data on quit attempts, effects on mental and substance-use severity, and meta-analyzed these outcomes where sufficient data were available. MAIN RESULTS: We identified 10 studies involving 1634 participants who smoked combustible tobacco at enrolment. One of the studies was ongoing. Most of the trials included participants who were recruited from community-based sites such as shelters, and three included participants who were recruited from clinics. We judged three studies to be at high risk of bias in one or more domains. We identified low-certainty evidence, limited by imprecision, that contingent reinforcement (rewards for successful smoking cessation) plus usual smoking cessation care was not more effective than usual care alone in promoting abstinence (RR 0.67, 95% CI 0.16 to 2.77; 1 trial, 70 participants). We identified very low-certainty evidence, limited by risk of bias and imprecision, that more intensive behavioral smoking cessation support was more effective than brief intervention in promoting abstinence at six-month follow-up (RR 1.64, 95% CI 1.01 to 2.69; 3 trials, 657 participants; I2 = 0%). There was low-certainty evidence, limited by bias and imprecision, that multi-issue support (cessation support that also encompassed help to deal with other challenges or addictions) was not superior to targeted smoking cessation support in promoting abstinence (RR 0.95, 95% CI 0.35 to 2.61; 2 trials, 146 participants; I2 = 25%). More data on these types of interventions are likely to change our interpretation of these data. Single studies that examined the effects of text-messaging support, e-cigarettes, or cognitive behavioral therapy for smoking cessation provided inconclusive results. Data on secondary outcomes, including mental health and substance use severity, were too sparse to draw any meaningful conclusions on whether there were clinically-relevant differences. We did not identify any studies that explicitly assessed interventions to increase access to tobacco cessation care; we were therefore unable to assess our secondary outcome 'number of participants receiving treatment'. AUTHORS' CONCLUSIONS: There is insufficient evidence to assess the effects of any tobacco cessation interventions specifically in people experiencing homelessness. Although there was some evidence to suggest a modest benefit of more intensive behavioral smoking cessation interventions when compared to less intensive interventions, our certainty in this evidence was very low, meaning that further research could either strengthen or weaken this effect. There is insufficient evidence to assess whether the provision of tobacco cessation support and its effects on quit attempts has any effect on the mental health or other substance-use outcomes of people experiencing homelessness. Although there is no reason to believe that standard tobacco cessation treatments work any differently in people experiencing homelessness than in the general population, these findings highlight a need for high-quality studies that address additional ways to engage and support people experiencing homelessness, in the context of the daily challenges they face. These studies should have adequate power and put effort into retaining participants for long-term follow-up of at least six months. Studies should also explore interventions that increase access to cessation services, and address the social and environmental influences of tobacco use among people experiencing homelessness. Finally, studies should explore the impact of tobacco cessation on mental health and substance-use outcomes.


Assuntos
Pessoas Mal Alojadas , Abandono do Hábito de Fumar/métodos , Fumar/terapia , Adulto , Viés , Monóxido de Carbono/análise , Terapia Cognitivo-Comportamental , Cotinina/análise , Aconselhamento/métodos , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Estilo de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Fumar/sangue , Envio de Mensagens de Texto , Dispositivos para o Abandono do Uso de Tabaco
20.
Cochrane Database Syst Rev ; 4: CD000031, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32319681

RESUMO

BACKGROUND: Whilst the pharmacological profiles and mechanisms of antidepressants are varied, there are common reasons why they might help people to stop smoking tobacco. Firstly, nicotine withdrawal may produce depressive symptoms and antidepressants may relieve these. Additionally, some antidepressants may have a specific effect on neural pathways or receptors that underlie nicotine addiction. OBJECTIVES: To assess the evidence for the efficacy, safety and tolerability of medications with antidepressant properties in assisting long-term tobacco smoking cessation in people who smoke cigarettes. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Specialized Register, which includes reports of trials indexed in the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO, clinicaltrials.gov, the ICTRP, and other reviews and meeting abstracts, in May 2019. SELECTION CRITERIA: We included randomized controlled trials (RCTs) that recruited smokers, and compared antidepressant medications with placebo or no treatment, an alternative pharmacotherapy, or the same medication used in a different way. We excluded trials with less than six months follow-up from efficacy analyses. We included trials with any follow-up length in safety analyses. DATA COLLECTION AND ANALYSIS: We extracted data and assessed risk of bias using standard Cochrane methods. We also used GRADE to assess the certainty of the evidence. The primary outcome measure was smoking cessation after at least six months follow-up, expressed as a risk ratio (RR) and 95% confidence intervals (CIs). We used the most rigorous definition of abstinence available in each trial, and biochemically validated rates if available. Where appropriate, we performed meta-analysis using a fixed-effect model. Similarly, we presented incidence of safety and tolerance outcomes, including adverse events (AEs), serious adverse events (SAEs), psychiatric AEs, seizures, overdoses, suicide attempts, death by suicide, all-cause mortality, and trial dropout due to drug, as RRs (95% CIs). MAIN RESULTS: We included 115 studies (33 new to this update) in this review; most recruited adult participants from the community or from smoking cessation clinics. We judged 28 of the studies to be at high risk of bias; however, restricting analyses only to studies at low or unclear risk did not change clinical interpretation of the results. There was high-certainty evidence that bupropion increased long-term smoking cessation rates (RR 1.64, 95% CI 1.52 to 1.77; I2 = 15%; 45 studies, 17,866 participants). There was insufficient evidence to establish whether participants taking bupropion were more likely to report SAEs compared to those taking placebo. Results were imprecise and CIs encompassed no difference (RR 1.16, 95% CI 0.90 to 1.48; I2 = 0%; 21 studies, 10,625 participants; moderate-certainty evidence, downgraded one level due to imprecision). We found high-certainty evidence that use of bupropion resulted in more trial dropouts due to adverse events of the drug than placebo (RR 1.37, 95% CI 1.21 to 1.56; I2 = 19%; 25 studies, 12,340 participants). Participants randomized to bupropion were also more likely to report psychiatric AEs compared with those randomized to placebo (RR 1.25, 95% CI 1.15 to 1.37; I2 = 15%; 6 studies, 4439 participants). We also looked at the safety and efficacy of bupropion when combined with other non-antidepressant smoking cessation therapies. There was insufficient evidence to establish whether combination bupropion and nicotine replacement therapy (NRT) resulted in superior quit rates to NRT alone (RR 1.19, 95% CI 0.94 to 1.51; I2 = 52%; 12 studies, 3487 participants), or whether combination bupropion and varenicline resulted in superior quit rates to varenicline alone (RR 1.21, 95% CI 0.95 to 1.55; I2 = 15%; 3 studies, 1057 participants). We judged the certainty of evidence to be low and moderate, respectively; in both cases due to imprecision, and also due to inconsistency in the former. Safety data were sparse for these comparisons, making it difficult to draw clear conclusions. A meta-analysis of six studies provided evidence that bupropion resulted in inferior smoking cessation rates to varenicline (RR 0.71, 95% CI 0.64 to 0.79; I2 = 0%; 6 studies, 6286 participants), whilst there was no evidence of a difference in efficacy between bupropion and NRT (RR 0.99, 95% CI 0.91 to 1.09; I2 = 18%; 10 studies, 8230 participants). We also found some evidence that nortriptyline aided smoking cessation when compared with placebo (RR 2.03, 95% CI 1.48 to 2.78; I2 = 16%; 6 studies, 975 participants), whilst there was insufficient evidence to determine whether bupropion or nortriptyline were more effective when compared with one another (RR 1.30 (favouring bupropion), 95% CI 0.93 to 1.82; I2 = 0%; 3 studies, 417 participants). There was no evidence that any of the other antidepressants tested (including St John's Wort, selective serotonin reuptake inhibitors (SSRIs), monoamine oxidase inhibitors (MAOIs)) had a beneficial effect on smoking cessation. Findings were sparse and inconsistent as to whether antidepressants, primarily bupropion and nortriptyline, had a particular benefit for people with current or previous depression. AUTHORS' CONCLUSIONS: There is high-certainty evidence that bupropion can aid long-term smoking cessation. However, bupropion also increases the number of adverse events, including psychiatric AEs, and there is high-certainty evidence that people taking bupropion are more likely to discontinue treatment compared with placebo. However, there is no clear evidence to suggest whether people taking bupropion experience more or fewer SAEs than those taking placebo (moderate certainty). Nortriptyline also appears to have a beneficial effect on smoking quit rates relative to placebo. Evidence suggests that bupropion may be as successful as NRT and nortriptyline in helping people to quit smoking, but that it is less effective than varenicline. There is insufficient evidence to determine whether the other antidepressants tested, such as SSRIs, aid smoking cessation, and when looking at safety and tolerance outcomes, in most cases, paucity of data made it difficult to draw conclusions. Due to the high-certainty evidence, further studies investigating the efficacy of bupropion versus placebo are unlikely to change our interpretation of the effect, providing no clear justification for pursuing bupropion for smoking cessation over front-line smoking cessation aids already available. However, it is important that where studies of antidepressants for smoking cessation are carried out they measure and report safety and tolerability clearly.


Assuntos
Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Abandono do Hábito de Fumar/métodos , Fumar/tratamento farmacológico , Ansiolíticos/efeitos adversos , Antidepressivos/efeitos adversos , Bupropiona/efeitos adversos , Bupropiona/uso terapêutico , Humanos , Nortriptilina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Fumar/psicologia , Abandono do Hábito de Fumar/psicologia , Dispositivos para o Abandono do Uso de Tabaco , Vareniclina/efeitos adversos , Vareniclina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa