Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Hum Mol Genet ; 28(6): 1023-1037, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445560

RESUMO

Prolactinomas are the most frequent type of pituitary tumors, which represent 10-20% of all intracranial neoplasms in humans. Prolactinomas develop in mice lacking the prolactin receptor (PRLR), which is a member of the cytokine receptor superfamily that signals via Janus kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) or phosphoinositide 3-kinase-Akt (PI3K-Akt) pathways to mediate changes in transcription, differentiation and proliferation. To elucidate the role of the PRLR gene in human prolactinomas, we determined the PRLR sequence in 50 DNA samples (35 leucocytes, 15 tumors) from 46 prolactinoma patients (59% males, 41% females). This identified six germline PRLR variants, which comprised four rare variants (Gly57Ser, Glu376Gln, Arg453Trp and Asn492Ile) and two low-frequency variants (Ile76Val, Ile146Leu), but no somatic variants. The rare variants, Glu376Gln and Asn492Ile, which were in complete linkage disequilibrium, and are located in the PRLR intracellular domain, occurred with significantly higher frequencies (P < 0.0001) in prolactinoma patients than in 60 706 individuals of the Exome Aggregation Consortium cohort and 7045 individuals of the Oxford Biobank. In vitro analysis of the PRLR variants demonstrated that the Asn492Ile variant, but not Glu376Gln, when compared to wild-type (WT) PRLR, increased prolactin-induced pAkt signaling (>1.3-fold, P < 0.02) and proliferation (1.4-fold, P < 0.02), but did not affect pSTAT5 signaling. Treatment of cells with an Akt1/2 inhibitor or everolimus, which acts on the Akt pathway, reduced Asn492Ile signaling and proliferation to WT levels. Thus, our results identify an association between a gain-of-function PRLR variant and prolactinomas and reveal a new etiology and potential therapeutic approach for these neoplasms.


Assuntos
Suscetibilidade a Doenças , Prolactinoma/etiologia , Prolactinoma/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Everolimo/farmacologia , Feminino , Genótipo , Humanos , Janus Quinases/metabolismo , Masculino , Mutação , Prolactinoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Prolactina/química , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
2.
Am J Med Genet A ; 182(11): 2521-2528, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32776440

RESUMO

Hereditary hyperuricemia may occur as part of a syndromic disorder or as an isolated nonsyndromic disease, and over 20 causative genes have been identified. Here, we report the use of whole genome sequencing (WGS) to establish a diagnosis in a family in which individuals were affected with gout, hyperuricemia associated with reduced fractional excretion of uric acid, chronic kidney disease (CKD), and secondary hyperparathyroidism, that are consistent with familial juvenile hyperuricemic nephropathy (FJHN). However, single gene testing had not detected mutations in the uromodulin (UMOD) or renin (REN) genes, which cause approximately 30-90% of FJHN. WGS was therefore undertaken, and this identified a heterozygous c.226G>C (p.Gly76Arg) missense variant in the paired box gene 2 (PAX2) gene, which co-segregated with renal tubulopathy in the family. PAX2 mutations are associated with renal coloboma syndrome (RCS), which is characterized by abnormalities in renal structure and function, and anomalies of the optic nerve. Ophthalmological examination in two adult brothers affected with hyperuricemia, gout, and CKD revealed the presence of optic disc pits, consistent with optic nerve coloboma, thereby revising the diagnosis from FJHN to RCS. Thus, our results demonstrate the utility of WGS analysis in establishing the correct diagnosis in disorders with multiple etiologies.


Assuntos
Hiperuricemia/genética , Mutação , Fator de Transcrição PAX2/genética , Adulto , Creatinina/sangue , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Hiperparatireoidismo Secundário/complicações , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Insuficiência Renal Crônica/complicações , Renina/genética , Ácido Úrico/metabolismo , Uromodulina/genética , Sequenciamento Completo do Genoma
4.
Int J Cancer ; 138(1): 137-45, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26178670

RESUMO

Studies have shown that the calcium-sensing receptor (CaSR) mediates the antitumorigenic effects of calcium against colorectal cancer (CRC). Expression of the CaSR in colorectal tumors is often reduced. We have reported previously that silencing of CaSR in CRC is caused in part by methylation of CaSR promoter 2 and loss of histone acetylation. We investigated the impact of aberrant microRNA expression on loss of CaSR expression. A microarray study in two Caco-2 subclones (Caco2/AQ and Caco2/15) that have similar genetic background, but different CaSR expression levels (Caco2/AQ expressing more CaSR than Caco2/15), identified 22 differentially expressed microRNAs that potentially target the CaSR. We validated these results by performing gain- and loss-of-function studies with the top candidates: miR-9, miR-27a, miR-135b, and miR-146b. Modulation of miR-135b or miR-146b expression by mimicking or inhibiting their expression regulated CaSR protein levels in two different colon cancer cell lines: Caco2/AQ (moderate endogenous CaSR expression) and HT29 (low endogenous CaSR levels). Inhibition of miR-135b and miR-146b expression led to high CaSR levels and significantly reduced proliferation. In samples of colorectal tumors we observed overexpression of miR-135b and miR-146b, and this correlated inversely with CaSR expression (miR-135b: r = -0.684, p < 0.001 and miR-146b: r = -0.448, p < 0.001), supporting our in vitro findings. We demonstrate that miR-135b and miR-146b target the CaSR and reduce its expression in colorectal tumors, reducing the antiproliferative and prodifferentiating actions of calcium. This provides a new approach for finding means to prevent CaSR loss, developing better treatment strategies for CRC.


Assuntos
Neoplasias Colorretais/genética , Inativação Gênica , MicroRNAs/genética , Receptores de Detecção de Cálcio/genética , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Detecção de Cálcio/metabolismo
5.
Hormones (Athens) ; 23(1): 3-14, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038882

RESUMO

Primary hyperparathyroidism (PHPT), a relatively common disorder characterized by hypercalcemia with raised or inappropriately normal serum parathyroid hormone (PTH) concentrations, may occur as part of a hereditary syndromic disorder or as a non-syndromic disease. The associated syndromic disorders include multiple endocrine neoplasia types 1-5 (MEN1-5) and hyperparathyroidism with jaw tumor (HPT-JT) syndromes, and the non-syndromic forms include familial hypocalciuric hypercalcemia types 1-3 (FHH1-3), familial isolated hyperparathyroidism (FIHP), and neonatal severe hyperparathyroidism (NS-HPT). Such hereditary forms may occur in > 10% of patients with PHPT, and their recognition is important for implementation of gene-specific screening protocols and investigations for other associated tumors. Syndromic PHPT tends to be multifocal and multiglandular with most patients requiring parathyroidectomy with the aim of limiting end-organ damage associated with hypercalcemia, particularly osteoporosis, nephrolithiasis, and renal failure. Some patients with non-syndromic PHPT may have mutations of the MEN1 gene or the calcium-sensing receptor (CASR), whose loss of function mutations usually cause FHH1, a disorder associated with mild hypercalcemia and may follow a benign clinical course. Measurement of the urinary calcium-to-creatinine ratio clearance (UCCR) may help to distinguish patients with FHH from those with PHPT, as the majority of FHH patients have low urinary calcium excretion (UCCR < 0.01). Once genetic testing confirms a hereditary cause of PHPT, further genetic testing can be offered to the patients' relatives and subsequent screening can be carried out in these affected family members, which prevents inappropriate testing in normal individuals.


Assuntos
Adenoma , Fibroma , Hipercalcemia , Hiperparatireoidismo Primário , Hiperparatireoidismo , Neoplasias Maxilomandibulares , Recém-Nascido , Humanos , Hiperparatireoidismo Primário/diagnóstico , Cálcio
6.
J Invest Dermatol ; 144(4): 811-819.e4, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37802293

RESUMO

Mosaic variants in genes GNAQ or GNA11 lead to a spectrum of vascular and pigmentary diseases including Sturge-Weber syndrome, in which progressive postnatal neurological deterioration led us to seek biologically targeted therapeutics. Using two cellular models, we find that disease-causing GNAQ/11 variants hyperactivate constitutive and G-protein coupled receptor ligand-induced intracellular calcium signaling in endothelial cells. We go on to show that the aberrant ligand-activated intracellular calcium signal is fueled by extracellular calcium influx through calcium-release-activated channels. Treatment with targeted small interfering RNAs designed to silence the variant allele preferentially corrects both the constitutive and ligand-activated calcium signaling, whereas treatment with a calcium-release-activated channel inhibitor rescues the ligand-activated signal. This work identifies hyperactivated calcium signaling as the primary biological abnormality in GNAQ/11 mosaicism and paves the way for clinical trials with genetic or small molecule therapies.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Subunidades alfa de Proteínas de Ligação ao GTP , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Mutação , Cálcio , Células Endoteliais/metabolismo , Mosaicismo , Sinalização do Cálcio/genética , Ligantes
7.
JBMR Plus ; 8(7): ziae060, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38827116

RESUMO

Nuclear factor I/X (NFIX) mutations are associated with 2 skeletal dysplasias, Marshall-Smith (MSS) and Malan (MAL) syndromes. NFIX encodes a transcription factor that regulates expression of genes, including Bobby sox (BBX) and glial fibrillary acidic protein (GFAP) in neural progenitor cells and astrocytes, respectively. To elucidate the role of NFIX mutations in MSS, we studied their effects in fibroblast cell lines obtained from 5 MSS unrelated patients and 3 unaffected individuals. The 5 MSS NFIX frameshift mutations in exons 6-8 comprised 3 deletions (c.819-732_1079-948del, c.819-471_1079-687del, c.819-592_1079-808del), an insertion (c.1037_1038insT), and a duplication (c.1090dupG). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses using MSS and unrelated control fibroblasts and in vitro expression studies in monkey kidney fibroblast (COS-7) cells showed that frameshift mutations in NFIX exons 6-8 generated mutant transcripts that were not cleared by nonsense-mediated-decay mechanisms and encoded truncated NFIX proteins. Moreover, BBX or GFAP expression was unaffected in the majority of MSS fibroblasts. To identify novel NFIX downstream target genes, RNA sequencing and proteomics analyses were performed on mouse embryonic fibroblast (MEF) cells derived from control Nfix+/+, Nfix+/Del2, Nfix+/Del24, NfixDel24/Del24, Nfix+/Del140, and NfixDel140/Del140 mice, compared with NfixDel2/Del2 mice which had developmental, skeletal, and neural abnormalities. This identified 191 transcripts and 815 proteins misregulated in NfixDel2/Del2 MEFs with ≥2-fold-change (P <0 .05). Validation studies using qRT-PCR and western blot analyses confirmed that 2 genes, cellular retinoic acid binding protein 2 (Crabp2) and vascular cell adhesion molecule 1 (Vcam1), were misregulated at the RNA and protein levels in NfixDel2/Del2 MEFs, and that CRABP2 and VCAM1 expressions were altered in 60%-100% of MSS fibroblast cells. Furthermore, in vitro luciferase reporter assays confirmed that NFIX directly regulates CRABP2 promoter activity. Thus, these altered genes and pathways may represent possible targets for drugs as potential treatments and therapies for MSS.

8.
Am J Pathol ; 180(4): 1485-94, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22330678

RESUMO

Several S100 proteins are up-regulated in pancreatic ductal adenocarcinoma (PDAC), the most significant being S100P. We previously reported on S100PBP, a binding partner of S100P, that shows no homology to any described protein and whose functions are completely unknown. To determine S100PBP expression across human tissues and organs, immunohistochemistry was performed using both multiorgan- and in-house-constructed pancreatic tissue microarrays. To establish S100PBP functions, cell lines with either stably overexpressed or silenced S100PBP were generated and investigated using Affymetrix gene expression arrays and complementary functional assays. We show that S100PBP is differentially expressed in various healthy and tumor specimens, which is both cancer- and tissue-type dependent. In healthy pancreas, S100PBP is expressed in the nuclear/perinuclear region of both exocrine and endocrine compartments. In early precancerous lesions, S100PBP is translocated to the cytoplasm, whereas in PDAC and metastatic lesions, its expression is significantly diminished. The most pronounced phenotypic change after manipulation of S100PBP expression was seen in adhesion; this was significantly reduced after S100PBP up-regulation and increased after S100PBP silencing. Up-regulation or silencing of S100PBP also led to a concomitant change in the levels of the protease cathepsin Z, the silencing of which significantly reduced PDAC cell adhesion. We further demonstrate that the interaction of cathepsin Z with arginine-glycine-aspartic acid-binding integrins, specifically αvß5, mediates the changes seen in adhesion of PDAC cells.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Proteínas de Transporte/fisiologia , Catepsina Z/metabolismo , Proteínas Nucleares/fisiologia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/secundário , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Adesão Celular/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Inativação Gênica , Humanos , Integrinas/metabolismo , Metástase Linfática , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Células Tumorais Cultivadas
9.
Endocr Oncol ; 3(1): e230003, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37434653

RESUMO

Pancreatic neuroendocrine tumours (PNETs) are the second most common pancreatic tumour. However, relatively little is known about their tumourigenic drivers, other than mutations involving the multiple endocrine neoplasia 1 (MEN1), ATRX chromatin remodeler, and death domain-associated protein genes, which are found in ~40% of sporadic PNETs. PNETs have a low mutational burden, thereby suggesting that other factors likely contribute to their development, including epigenetic regulators. One such epigenetic process, DNA methylation, silences gene transcription via 5'methylcytosine (5mC), and this is usually facilitated by DNA methyltransferase enzymes at CpG-rich areas around gene promoters. However, 5'hydroxymethylcytosine, which is the first epigenetic mark during cytosine demethylation, and opposes the function of 5mC, is associated with gene transcription, although the significance of this remains unknown, as it is indistinguishable from 5mC when conventional bisulfite conversion techniques are solely used. Advances in array-based technologies have facilitated the investigation of PNET methylomes and enabled PNETs to be clustered by methylome signatures, which has assisted in prognosis and discovery of new aberrantly regulated genes contributing to tumourigenesis. This review will discuss the biology of DNA methylation, its role in PNET development, and impact on prognostication and discovery of epigenome-targeted therapies.

10.
JBMR Plus ; 7(6): e10739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283649

RESUMO

The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

11.
J Endocr Soc ; 6(7): bvac079, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35668994

RESUMO

Bartter syndrome (BS) and Gitelman syndrome (GS) are renal tubular disorders affecting sodium, potassium, and chloride reabsorption. Clinical features include muscle cramps and weakness, in association with hypokalemia, hypochloremic metabolic alkalosis, and hyperreninemic hyperaldosteronism. Hypomagnesemia and hypocalciuria are typical of GS, while juxtaglomerular hyperplasia is characteristic of BS. GS is due to SLC12A3 variants, whereas BS is due to variants in SLC12A1, KCNJ1, CLCNKA, CLCNKB, BSND, MAGED2, or CASR. We had the opportunity to follow up one of the first reported cases of a salt-wasting tubulopathy, who based on clinical features was diagnosed with GS. The patient had presented at age 10 years with tetany precipitated by vomiting or diarrhea. She had hypokalemia, a hypochloremic metabolic alkalosis, hyponatremia, mild hypercalcemia, and normomagnesemia, and subsequently developed hypocalciuria and hypomagnesemia. A renal biopsy showed no evidence for juxtaglomerular hyperplasia. She developed chronic kidney failure at age 55 years, and ocular sclerochoroidal calcification, associated with BS and GS, at older than 65 years. Our aim was therefore to establish the genetic diagnosis in this patient using whole-genome sequencing (WGS). Leukocyte DNA was used for WGS analysis, and this revealed a homozygous c.226C > T (p.Arg76Ter) nonsense CLCNKB mutation, thereby establishing a diagnosis of BS type-3. WGS also identified 2 greater than 5-Mb regions of homozygosity that suggested likely mutational heterozygosity in her parents, who originated from a Greek island with fewer than 1500 inhabitants and may therefore have shared a common ancestor. Our results demonstrate the utility of WGS in establishing the correct diagnosis in renal tubular disorders with overlapping phenotypes.

12.
Endocr Relat Cancer ; 29(10): 557-568, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900839

RESUMO

Multiple endocrine neoplasia type 1 (MEN1), caused by mutations in the MEN1 gene encoding menin, is an autosomal dominant disorder characterised by the combined occurrence of parathyroid, pituitary and pancreatic neuroendocrine tumours (NETs). Development of these tumours is associated with wide variations in their severity, order and ages (from <5 to >80 years), requiring life-long screening. To improve tumour surveillance and quality of life, better circulating biomarkers, particularly for pancreatic NETs that are associated with higher mortality, are required. We, therefore, examined the expression of circulating miRNA in the serum of MEN1 patients. Initial profiling analysis followed by qRT-PCR validation studies identified miR-3156-5p to be significantly downregulated (-1.3 to 5.8-fold, P < 0.05-0.0005) in nine MEN1 patients, compared to matched unaffected relatives. MEN1 knock-down experiments in BON-1 human pancreatic NET cells resulted in reduced MEN1 (49%, P < 0.05), menin (54%, P < 0.05) and miR-3156-5p expression (20%, P < 0.005), compared to control-treated cells, suggesting that miR-3156-5p downregulation is a consequence of loss of MEN1 expression. In silico analysis identified mortality factor 4-like 2 (MOR4FL2) as a potential target of miR-3156-5p, and in vitro functional studies in BON-1 cells transfected with either miR-3156-5p mimic or inhibitors showed that the miR-3156-5p mimic significantly reduced MORF4L2 protein expression (46%, P < 0.005), while miR-3156-5p inhibitor significantly increased MORF4L2 expression (1.5-fold, P < 0.05), compared to control-treated cells, thereby confirming that miR-3156-5p regulates MORF4L2 expression. Thus, the inverse relationship between miR-3156-5p and MORF4L2 expression represents a potential serum biomarker that could facilitate the detection of NET occurrence in MEN1 patients.


Assuntos
MicroRNAs , Neoplasia Endócrina Múltipla Tipo 1 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Neoplasia Endócrina Múltipla Tipo 1/patologia , Mutação , Qualidade de Vida , Fatores de Transcrição/genética , Adulto Jovem
13.
Cancers (Basel) ; 14(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428741

RESUMO

Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.

14.
Surgery ; 171(1): 77-87, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183184

RESUMO

BACKGROUND: Clinical manifestations and treatment outcomes in children and adolescents with multiple endocrine neoplasia type 1 are not well characterized. METHODS: We conducted a retrospective cohort study of 80 patients with multiple endocrine neoplasia type 1 who commenced tumor surveillance at ≤18 years of age. RESULTS: Fifty-six patients (70%) developed an endocrine tumor by age ≤18 years (median age = 14 years, range = 6-18 years). Primary hyperparathyroidism occurred in >80% of patients, with >70% undergoing parathyroidectomy, in which less-than-subtotal (<3-gland) resection resulted in decreased disease-free outcomes versus subtotal (3-3.5-gland) or total (4-gland) parathyroidectomy (median 27 months versus not reached; P = .005). Pancreaticoduodenal neuroendocrine tumors developed in ∼35% of patients, of whom >70% had nonfunctioning tumors, >35% had insulinomas, and <5% had gastrinomas, with ∼15% having metastases and >55% undergoing surgery. Pituitary tumors developed in >30% of patients, and ∼35% were macroprolactinomas. Tumor occurrence in male patients and female patients was not significantly different. Genetic analyses revealed 38 germline MEN1 mutations, of which 3 were novel. CONCLUSION: Seventy percent of children aged ≤18 years with multiple endocrine neoplasia type 1 develop endocrine tumors, which include parathyroid tumors for which less-than-subtotal parathyroidectomy should be avoided; pancreaticoduodenal neuroendocrine tumors that may metastasize; and pituitary macroprolactinomas.


Assuntos
Neoplasias Duodenais/epidemiologia , Hiperparatireoidismo Primário/epidemiologia , Neoplasia Endócrina Múltipla Tipo 1/complicações , Neoplasias Pancreáticas/epidemiologia , Neoplasias das Paratireoides/epidemiologia , Adolescente , Criança , Neoplasias Duodenais/genética , Neoplasias Duodenais/cirurgia , Feminino , Humanos , Hiperparatireoidismo Primário/genética , Hiperparatireoidismo Primário/cirurgia , Masculino , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/cirurgia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/cirurgia , Paratireoidectomia/estatística & dados numéricos , Estudos Retrospectivos
15.
J Mol Endocrinol ; 67(3): 83-94, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34223822

RESUMO

Corticotrophinomas represent 10% of all surgically removed pituitary adenomas, however, current treatment options are often not effective, and there is a need for improved pharmacological treatments. Recently, JQ1+, a bromodomain inhibitor that promotes gene transcription by binding acetylated histone residues and recruiting transcriptional machinery, has been shown to reduce proliferation in a murine corticotroph cell line, AtT20. RNA-Seq analysis of AtT20 cells following treatment with JQ1+ identified the calcium-sensing receptor (CaSR) gene as significantly downregulated, which was subsequently confirmed using real-time PCR and Western blot analysis. CaSR is a G protein-coupled receptor that plays a central role in calcium homeostasis but can elicit non-calcitropic effects in multiple tissues, including the anterior pituitary where it helps regulate hormone secretion. However, in AtT20 cells, CaSR activates a tumour-specific cAMP pathway that promotes ACTH and PTHrP hypersecretion. We hypothesised that the Casr promoter may harbour binding sites for BET proteins, and using chromatin immunoprecipitation (ChIP)-sequencing demonstrated that the BET protein Brd3 binds to the promoter of the Casr gene. Assessment of CaSR signalling showed that JQ1+ significantly reduced Ca2+e-mediated increases in intracellular calcium (Ca2+i) mobilisation and cAMP signalling. However, the CaSR-negative allosteric modulator, NPS-2143, was unable to reduce AtT20 cell proliferation, indicating that reducing CaSR expression rather than activity is likely required to reduce pituitary cell proliferation. Thus, these studies demonstrate that reducing CaSR expression may be a viable option in the treatment of pituitary tumours. Moreover, current strategies to reduce CaSR activity, rather than protein expression for cancer treatments, may be ineffective.


Assuntos
Azepinas/farmacologia , Hipófise/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Triazóis/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Camundongos , Receptores de Detecção de Cálcio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
16.
Endocr Rev ; 42(2): 133-170, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249439

RESUMO

Multiple endocrine neoplasia type 1 (MEN1), a rare tumor syndrome that is inherited in an autosomal dominant pattern, is continuing to raise great interest for endocrinology, gastroenterology, surgery, radiology, genetics, and molecular biology specialists. There have been 2 major clinical practice guidance papers published in the past 2 decades, with the most recent published 8 years ago. Since then, several new insights on the basic biology and clinical features of MEN1 have appeared in the literature, and those data are discussed in this review. The genetic and molecular interactions of the MEN1-encoded protein menin with transcription factors and chromatin-modifying proteins in cell signaling pathways mediated by transforming growth factor ß/bone morphogenetic protein, a few nuclear receptors, Wnt/ß-catenin, and Hedgehog, and preclinical studies in mouse models have facilitated the understanding of the pathogenesis of MEN1-associated tumors and potential pharmacological interventions. The advancements in genetic diagnosis have offered a chance to recognize MEN1-related conditions in germline MEN1 mutation-negative patients. There is rapidly accumulating knowledge about clinical presentation in children, adolescents, and pregnancy that is translatable into the management of these very fragile patients. The discoveries about the genetic and molecular signatures of sporadic neuroendocrine tumors support the development of clinical trials with novel targeted therapies, along with advancements in diagnostic tools and surgical approaches. Finally, quality of life studies in patients affected by MEN1 and related conditions represent an effort necessary to develop a pharmacoeconomic interpretation of the problem. Because advances are being made both broadly and in focused areas, this timely review presents and discusses those studies collectively.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Tumores Neuroendócrinos , Adolescente , Animais , Mutação em Linhagem Germinativa , Humanos , Camundongos , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Neoplasia Endócrina Múltipla Tipo 1/patologia , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/terapia , Qualidade de Vida , Transdução de Sinais
17.
J Bone Miner Res ; 36(1): 100-109, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32780883

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by the occurrence of parathyroid, pancreatic and pituitary tumors, and is due to mutations in the coding region of the MEN1 gene, which encodes menin. We investigated a family with identical twins that had MEN1, with different MEN1 tumors. DNA sequence analysis of the MEN1 coding region had not identified any abnormalities and we hypothesized that deletions and mutations involving the untranslated regions may be involved. Informed consent and venous blood samples were obtained from five family members. Sanger DNA sequencing and multiplex ligation-dependent probe amplification (MLPA) analyses were performed using leukocyte DNA. This revealed a heterozygous 596bp deletion (Δ596bp) between nucleotides -1087 and -492 upstream of the translation start site, located within the MEN1 5' untranslated region (UTR), and includes the core promoter and multiple cis-regulatory regions. To investigate the effects of this 5'UTR deletion on MEN1 promoter activity, we generated luciferase reporter constructs, containing either wild-type 842bp or mutant 246bp MEN1 promoter, and transfected them into human embryonic kidney HEK293 and pancreatic neuroendocrine tumor BON-1 cells. This revealed the Δ596bp mutation to result in significant reductions by 37-fold (p < 0.0001) and 16-fold (p < 0.0001) in luciferase expression in HEK293 and BON-1 cells, respectively, compared to wild-type. The effects of this 5'UTR deletion on MEN1 transcription and translation were assessed using qRT-PCR and Western blot analyses, respectively, of mRNA and protein lysates obtained from Epstein-Barr-virus transformed lymphoblastoid cells derived from affected and unaffected individuals. This demonstrated the Δ596bp mutation to result in significant reductions of 84% (p < 0.05) and 88% (p < 0.05) in MEN1 mRNA and menin protein, respectively, compared to unaffected individuals. Thus, our results report the first germline MEN1 5'UTR mutation and highlight the importance of investigating UTRs in MEN1 patients who do not have coding region mutations. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Regiões 5' não Traduzidas/genética , Sequência de Bases , Células HEK293 , Humanos , Neoplasia Endócrina Múltipla Tipo 1/genética , Proteínas Proto-Oncogênicas , Análise de Sequência de DNA
18.
Nat Genet ; 53(9): 1360-1372, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34385710

RESUMO

Most aldosterone-producing adenomas (APAs) have gain-of-function somatic mutations of ion channels or transporters. However, their frequency in aldosterone-producing cell clusters of normal adrenal gland suggests a requirement for codriver mutations in APAs. Here we identified gain-of-function mutations in both CTNNB1 and GNA11 by whole-exome sequencing of 3/41 APAs. Further sequencing of known CTNNB1-mutant APAs led to a total of 16 of 27 (59%) with a somatic p.Gln209His, p.Gln209Pro or p.Gln209Leu mutation of GNA11 or GNAQ. Solitary GNA11 mutations were found in hyperplastic zona glomerulosa adjacent to double-mutant APAs. Nine of ten patients in our UK/Irish cohort presented in puberty, pregnancy or menopause. Among multiple transcripts upregulated more than tenfold in double-mutant APAs was LHCGR, the receptor for luteinizing or pregnancy hormone (human chorionic gonadotropin). Transfections of adrenocortical cells demonstrated additive effects of GNA11 and CTNNB1 mutations on aldosterone secretion and expression of genes upregulated in double-mutant APAs. In adrenal cortex, GNA11/Q mutations appear clinically silent without a codriver mutation of CTNNB1.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Adenoma Adrenocortical/genética , Aldosterona/biossíntese , Subunidades alfa de Proteínas de Ligação ao GTP/genética , beta Catenina/genética , Adolescente , Neoplasias do Córtex Suprarrenal/patologia , Adenoma Adrenocortical/patologia , Adulto , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Hiperaldosteronismo/patologia , Masculino , Menopausa/metabolismo , Pessoa de Meia-Idade , Gravidez , Puberdade/metabolismo
19.
Endocr Relat Cancer ; 27(9): R345-R355, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590358

RESUMO

Neuroendocrine neoplasms (NENs) occur usually as sporadic tumours; however, rarely, they may arise in the context of a hereditary syndrome, such as multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder characterised by the combined development of pancreatic NENs (pNENs) together with parathyroid and anterior pituitary tumours. The therapeutic decision for sporadic pNENs patients is multi-disciplinary and complex: based on the grade and stage of the tumor, various options (and their combinations) are considered, such as surgical excision (either curative or for debulking aims), biological drugs (somatostatin analogues), targeted therapies (mTOR inhibitors or tyrosine kinases (TK)/receptors inhibitors), peptide receptor radioligand therapy (PRRT), chemotherapy, and liver-directed therapies. However, treatment of MEN1-related NENs' patients is even more challenging, as these tumours are usually multifocal with co-existing foci of heterogeneous biology and malignant potential, rendering them more resistant to the conventional therapies used in their sporadic counterparts, and therefore associated with a poorer prognosis. Moreover, clinical data using standard therapeutic options in MEN1-related NENs are scarce. Recent preclinical studies have identified potentially new targeted therapeutic options for treating MEN1-associated NENs, such as epigenetic modulators, Wnt pathway-targeting ß-catenin antagonists, Ras signalling modulators, Akt/mTOR signalling modulators, novel somatostatin receptors analogues, anti-angiogenic drugs, as well as MEN1 gene replacement therapy. The present review aims to summarize these novel therapeutic opportunities for NENs developing in the context of MEN1 syndrome, with an emphasis on pancreatic NENs, as they are the most frequent ones studied in MEN1-NENs models to date; moreover, due to the recent shifting nomenclature of 'pituitary adenomas' to 'pituitary neuroendocrine neoplasms', relevant data on MEN1-pituitary tumours, when appropriate, are briefly described.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1/tratamento farmacológico , Tumores Neuroendócrinos/tratamento farmacológico , Feminino , Humanos , Masculino
20.
J Endocr Soc ; 4(11): bvaa142, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33150274

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by the combined occurrence of parathyroid tumors, pituitary adenomas, and pancreatic neuroendocrine neoplasms (PNENs). MEN1 is caused by germline MEN1 mutations in > 75% of patients, and the remaining 25% of patients may have mutations in unidentified genes or represent phenocopies with mutations in genes such as cell cycle division 73 (CDC73), the calcium sensing receptor (CASR), and cyclin-dependent kinase inhibitor 1B (CDKN1B), which are associated with the hyperparathyroidism-jaw tumor syndrome, familial hypocalciuric hypercalcemia type 1, and MEN4, respectively. Here, we report a heterozygous c.1138C>T (p.Leu380Phe) CDC73 germline variant in a clinically diagnosed MEN1 patient, based on combined occurrence of primary hyperparathyroidism, acromegaly, and a PNEN. Characterization of the PNEN confirmed it was a neuroendocrine neoplasm as it immuno-stained positively for chromogranin and glucagon. The rare variant p.Leu380Phe occurred in a highly conserved residue, and further analysis using RNA-Scope indicated that it was associated with a significant reduction in CDC73 expression in the PNEN. Previously, CDC73 mutations have been reported to be associated with tumors of the parathyroids, kidneys, uterus, and exocrine pancreas. Thus, our report of a patient with PNEN and somatotrophinoma who had a CDC73 variant, provides further evidence that CDC73 variants may result in a MEN1 phenocopy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa