Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953409

RESUMO

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Assuntos
Anti-Inflamatórios , Epigênese Genética , Flavanonas , Proteína 2 de Ligação a Metil-CpG , Regiões Promotoras Genéticas , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Animais , Flavanonas/farmacologia , Epigênese Genética/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Metilação de DNA/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Transcrição RelA/metabolismo , Sepse/tratamento farmacológico , Sepse/genética , Sepse/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , DNA Metiltransferase 3A/metabolismo , Masculino , Proteína p300 Associada a E1A/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética
2.
Anesthesiology ; 138(4): 388-402, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637480

RESUMO

BACKGROUND: The authors tested the hypothesis that the effects of traumatic brain injury, surgery, and sevoflurane interact to induce neurobehavioral abnormalities in adult male rats and in their offspring (an animal model of intergenerational perioperative neurocognitive disorder). METHODS: Sprague-Dawley male rats (assigned generation F0) underwent a traumatic brain injury on postnatal day 60 that involved craniectomy (surgery) under 3% sevoflurane for 40 min followed by 2.1% sevoflurane for 3 h on postnatal days 62, 64, and 66 (injury group). The surgery group had craniectomy without traumatic brain injury, whereas the sevoflurane group had sevoflurane only. On postnatal day 90, F0 males and control females were mated to generate offspring (assigned generation F1). RESULTS: Acutely, F0 injury rats exhibited the greatest increases in serum corticosterone and interleukin-1ß and -6, and activation of the hippocampal microglia. Long-term, compared to controls, F0 injury rats had the most exacerbated corticosterone levels at rest (mean ± SD, 2.21 ± 0.64 vs. 7.28 ± 1.95 ng/ml, n = 7 - 8; P < 0.001) and 10 min after restraint (133.12 ± 33.98 vs. 232.83 ± 40.71 ng/ml, n = 7 - 8; P < 0.001), increased interleukin-1ß and -6, and reduced expression of hippocampal glucocorticoid receptor (Nr3c1; 0.53 ± 0.08 fold change relative to control, P < 0.001, n = 6) and brain-derived neurotrophic factor genes. They also exhibited greater behavioral deficiencies. Similar abnormalities were evident in their male offspring, whereas F1 females were not affected. The reduced Nr3c1 expression in F1 male, but not female, hippocampus was accompanied by corresponding Nr3c1 promoter hypermethylated CpG sites in F0 spermatozoa and F1 male, but not female, hippocampus. CONCLUSIONS: These findings in rats suggest that young adult males with traumatic brain injury are at an increased risk of developing perioperative neurocognitive disorder, as are their unexposed male but not female offspring.


Assuntos
Lesões Encefálicas Traumáticas , Corticosterona , Feminino , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Sevoflurano/efeitos adversos , Corticosterona/metabolismo , Interleucina-1beta/metabolismo , Hipocampo/metabolismo , Transtornos Neurocognitivos/induzido quimicamente
3.
J Nanobiotechnology ; 21(1): 52, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765377

RESUMO

Inflammatory depression is closely related to neuroinflammation. However, current anti-inflammatory drugs have low permeability to cross blood-brain barrier with difficulties reaching the central nervous system to provide therapeutic effectiveness. To overcome this limitation, the nano-based drug delivery technology was used to synthesize melanin-like polydopamine nanoparticles (PDA NPs) (~ 250 nm) which can cross the blood-brain barrier. Importantly, PDA NPs with abundant phenolic hydroxyl groups function as excellent free radical scavengers to attenuate cell damage caused by reactive oxygen species or acute inflammation. In vitro experiments revealed that PDA NPs exhibited excellent antioxidative properties. Next, we aimed to investigate the therapeutic effect of PDA NPs on inflammatory depression through intraperitoneal injection to the lipopolysaccharide-induced inflammatory depression model in mice. PDA NPs significantly reversed the depression-like behavior. PDA NPs was also found to reduce the peripheral and central inflammation induced by LPS, showing that alleviated splenomegaly, reduced serum inflammatory cytokines, inhibited microglial activation and restored synaptic loss. Various experiments also showed that PDA NPs had good biocompatibility both in vivo and in vitro. Our work suggested that PDA NPs may be biocompatible nano-drugs in treating inflammatory depression but their clinical application requires further study.


Assuntos
Melaninas , Nanopartículas , Camundongos , Animais , Depressão/tratamento farmacológico , Nanopartículas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico
4.
Anesth Analg ; 135(4): 877-887, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759382

RESUMO

BACKGROUND: Sevoflurane (SEVO) increases neuronal excitation in neonatal rodent brains through alteration of gamma aminobutyric acid (GABA)(A) receptor signaling and increases corticosterone release. These actions may contribute to mechanisms that initiate the anesthetic's long-term neuroendocrine and neurobehavioral effects. Dexmedetomidine (DEX), a non-GABAergic α2-adrenergic receptor agonist, is likely to counteract SEVO-induced neuronal excitation. We investigated how DEX pretreatment may alter the neurodevelopmental effects induced by SEVO in neonatal rats. METHODS: Postnatal day (P) 5 Sprague-Dawley male rats received DEX (25 µg/kg, intraperitoneal) or vehicle before exposure to 2.1% SEVO for 6 hours (the DEX + SEVO and SEVO groups, respectively). Rats in the DEX-only group received DEX without exposure to SEVO. A subcohort of P5 rats was used for electroencephalographic and serum corticosterone measurements. The remaining rats were sequentially evaluated in the elevated plus maze on P80, prepulse inhibition of the acoustic startle response on P90, Morris water maze (MWM) starting on P100, and for corticosterone responses to physical restraint for 30 minutes on P120, followed by assessment of epigenomic DNA methylation patterns in the hippocampus. RESULTS: Acutely, DEX depressed SEVO-induced electroencephalogram-detectable seizure-like activity (mean ± SEM, SEVO versus DEX + SEVO, 33.1 ± 5.3 vs 3.9 ± 5.3 seconds, P < .001), but it exacerbated corticosterone release (SEVO versus DEX + SEVO, 169.935 ± 20.995 versus 280.853 ± 40.963 ng/mL, P = .043). DEX diminished, but did not fully abolish, SEVO-induced corticosterone responses to restraint (control: 11625.230 ± 877.513, SEVO: 19363.555 ± 751.325, DEX + SEVO: 15012.216 ± 901.706, DEX-only: 12497.051 ± 999.816; F[3,31] = 16.878, P < .001) and behavioral deficiencies (time spent in the target quadrant of the MWM: control: 31.283% ± 1.722%, SEVO: 21.888% ± 2.187%, DEX + SEVO: 28.617% ± 1.501%, DEX-only: 31.339% ± 3.087%; F[3,67] = 3.944, P = .012) in adulthood. Of the 391 differentially methylated genes in the SEVO group, 303 genes in the DEX + SEVO group had DNA methylation patterns that were not different from those in the control group (ie, they were normal). DEX alone did not cause acute or long-term functional abnormalities. CONCLUSIONS: This study suggests that the ability of DEX to depress SEVO-induced neuronal excitation, despite increasing corticosterone release, is sufficient to weaken mechanisms leading to long-term neuroendocrine/neurobehavioral abnormalities. DEX may prevent changes in DNA methylation in the majority of genes affected by SEVO, epigenetic modifications that could predict abnormalities in a wide range of functions.


Assuntos
Anestésicos Inalatórios , Dexmedetomidina , Agonistas Adrenérgicos/farmacologia , Animais , Animais Recém-Nascidos , Corticosterona/farmacologia , Dexmedetomidina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto , Sevoflurano/farmacologia , Ácido gama-Aminobutírico
5.
Biol Reprod ; 105(3): 735-746, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34192761

RESUMO

Most surgical procedures require general anesthesia, which is a reversible deep sedation state lacking all perception. The induction of this state is possible because of complex molecular and neuronal network actions of general anesthetics (GAs) and other pharmacological agents. Laboratory and clinical studies indicate that the effects of GAs may not be completely reversible upon anesthesia withdrawal. The long-term neurocognitive effects of GAs, especially when administered at the extremes of ages, are an increasingly recognized health concern and the subject of extensive laboratory and clinical research. Initial studies in rodents suggest that the adverse effects of GAs, whose actions involve enhancement of GABA type A receptor activity (GABAergic GAs), can also extend to future unexposed offspring. Importantly, experimental findings show that GABAergic GAs may induce heritable effects when administered from the early postnatal period to at least young adulthood, covering nearly all age groups that may have children after exposure to anesthesia. More studies are needed to understand when and how the clinical use of GAs in a large and growing population of patients can result in lower resilience to diseases in the even larger population of their unexposed offspring. This minireview is focused on the authors' published results and data in the literature supporting the notion that GABAergic GAs, in particular sevoflurane, may upregulate systemic levels of stress and sex steroids and alter expressions of genes that are essential for the functioning of these steroid systems. The authors hypothesize that stress and sex steroids are involved in the mediation of sex-specific heritable effects of sevoflurane.


Assuntos
Anestésicos Inalatórios/efeitos adversos , Hormônios Esteroides Gonadais/metabolismo , Padrões de Herança/efeitos dos fármacos , Sevoflurano/efeitos adversos , Estresse Fisiológico/fisiologia , Animais , Humanos , Camundongos , Ratos
6.
BMC Med Genet ; 21(1): 17, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996156

RESUMO

BACKGROUND: Several reports were published on the relationship between the vascular endothelial growth factor (VEGF) -2578C > A gene polymorphism and lung cancer risk; however, the results are debatable. This meta-analysis was conducted to assess the relationship between VEGF -2578C > A gene polymorphism and lung cancer risk. METHODS: The associated literatures were identified on the 1st of September 2018 from CBM-disc (China Biological Medicine Database) and PubMed. RESULT: A total of 14 reports were recruited into our meta-analysis to assess the association between VEGF -2578C > A gene polymorphism and lung cancer susceptibility. There was a marked association between VEGF -2578C > A A allele / CC genotype and lung cancer risk in overall and Asian populations (overall populations: A allele: OR = 1.26, 95% CI: 1.08-1.46, P = 0.003; CC genotype: OR = 0.72, 95% CI: 0.54-0.95, P = 0.02; Asians: A allele: OR = 1.33, 95% CI: 1.15-1.55, P = 0.0002; CC genotype: OR = 0.68, 95% CI: 0.50-0.93, P = 0.01). However, VEGF -2578C > A gene polymorphism was not associated with the risk of lung cancer in Caucasians. CONCLUSION: VEGF -2578C > A A allele / CC genotype is associated with the lung cancer susceptibility in Asians and in overall populations.


Assuntos
Neoplasias Pulmonares/genética , Fator A de Crescimento do Endotélio Vascular/genética , Alelos , Povo Asiático/genética , Bases de Dados Factuais , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Neoplasias Pulmonares/etnologia , Razão de Chances , Polimorfismo de Nucleotídeo Único , Fator C de Crescimento do Endotélio Vascular/genética
7.
Anesth Analg ; 131(4): 1291-1299, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32925350

RESUMO

BACKGROUND: Neonatal exposure to sevoflurane induces neurobehavioral and neuroendocrine abnormalities in exposed male rats (generation F0) and neurobehavioral, but not neuroendocrine, abnormalities in their male, but not female, offspring (generation F1). These effects of sevoflurane are accompanied by a hypermethylated neuron-specific K-2Cl (Kcc2) Cl exporter gene in the F0 spermatozoa and the F1 male hypothalamus, while the gene's expression is reduced in the F0 and F1 hypothalamus. We investigated whether inhibition of deoxyribonucleic acid methyltransferases (DNMTs) before paternal sevoflurane exposure could alleviate the anesthetic's F0 and F1 effects. METHODS: Sprague-Dawley male rats were anesthetized with 2.1% sevoflurane for 5 hours on postnatal day (P) 5 and mated with control females on P90 to generate offspring. The nonselective DNMT inhibitor decitabine (0.5 mg/kg, intraperitoneally) was administered 30 minutes before sevoflurane exposure. The F0 and F1 male rats were evaluated in in vivo and in vitro tests in adulthood. RESULTS: Paternal exposure to sevoflurane induced impaired prepulse inhibition of the acoustic startle response and exacerbated corticosterone responses to stress in F0 males and impaired prepulse inhibition of the startle responses in F1 males. These effects were accompanied in both generations by reduced and increased expressions of hypothalamic Kcc2 and Dnmt3a/b, respectively. Decitabine deterred the effects of paternal exposure to sevoflurane in F0 and F1 males. CONCLUSIONS: These results suggest that similar decitabine-sensitive mechanisms regulating expression of multiple genes are involved in the mediation of neurobehavioral abnormalities in sires neonatally exposed to sevoflurane and in their future unexposed male offspring.


Assuntos
Anestesia por Inalação/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Antimetabólitos Antineoplásicos/uso terapêutico , Decitabina/uso terapêutico , Exposição Paterna/efeitos adversos , Sevoflurano/efeitos adversos , Animais , Animais Recém-Nascidos , Corticosterona/metabolismo , Metilases de Modificação do DNA/antagonistas & inibidores , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Estresse Psicológico/metabolismo , Simportadores/antagonistas & inibidores , Cotransportadores de K e Cl-
8.
Anesthesiology ; 131(5): 1092-1109, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31517640

RESUMO

BACKGROUND: Sevoflurane administered to neonatal rats induces neurobehavioral abnormalities and epigenetic reprogramming of their germ cells; the latter can pass adverse effects of sevoflurane to future offspring. As germ cells are susceptible to reprogramming by environmental factors across the lifespan, the authors hypothesized that sevoflurane administered to adult rats could induce neurobehavioral abnormalities in future offspring, but not in the exposed rats themselves. METHODS: Sprague-Dawley rats were anesthetized with 2.1% sevoflurane for 3 h every other day between postnatal days 56 and 60. Twenty-five days later, exposed rats and nonexposed controls were mated to produce offspring. RESULTS: Adult male but not female offspring of exposed parents of either sex exhibited deficiencies in elevated plus maze (mean ± SD, offspring of both exposed parents vs. offspring of control parents, 35 ± 12 vs. 15 ± 15 s, P < 0.001) and prepulse inhibition of acoustic startle (offspring of both exposed parents vs. offspring of control parents, 46.504 ± 13.448 vs. 25.838 ± 22.866%, P = 0.009), and increased methylation and reduced expression of the potassium ion-chloride ion cotransporter KCC2 gene (Kcc2) in the hypothalamus. Kcc2 was also hypermethylated in sperm and ovary of the exposed rats. Surprisingly, exposed male rats also exhibited long-term abnormalities in functioning of the hypothalamic-pituitary-gonadal and -adrenal axes, reduced expression of hypothalamic and hippocampal Kcc2, and deficiencies in elevated plus maze (sevoflurane vs. control, 40 ± 24 vs. 25 ± 12 s, P = 0.038) and prepulse inhibition of startle (sevoflurane vs. control, 39.905 ± 21.507 vs. 29.193 ± 24.263%, P < 0.050). CONCLUSIONS: Adult sevoflurane exposure affects brain development in male offspring by epigenetically reprogramming both parental germ cells, while it induces neuroendocrine and behavioral abnormalities only in exposed males. Sex steroids may be required for mediation of the adverse effects of adult sevoflurane in exposed males.


Assuntos
Anestésicos Inalatórios/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Inibição Pré-Pulso/efeitos dos fármacos , Sevoflurano/efeitos adversos , Fatores Etários , Anestésicos Inalatórios/administração & dosagem , Animais , Animais Recém-Nascidos , Epigênese Genética/fisiologia , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Inibição Pré-Pulso/fisiologia , Ratos , Ratos Sprague-Dawley , Sevoflurano/administração & dosagem
10.
Neurobiol Dis ; 91: 209-220, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27001149

RESUMO

Human studies, and especially laboratory studies, provide evidence that early life exposure to general anesthesia may affect neurocognitive development via largely unknown mechanisms. We explored whether hippocampal histone acetylation had a role in neurodevelopmental effects of sevoflurane administered to neonatal rats. Male Sprague-Dawley rats were exposed to 3% sevoflurane or were subjected to maternal separation only for 2h daily at postnatal days 6, 7, and 8. The histone deacetylase inhibitor, sodium butyrate (250mg/kg, intraperitoneally), or saline was administered starting 2h prior to anesthesia or maternal separation and continued daily until the end of behavioral tests, which were performed between postnatal days 33 and 50. Upon completion of the behavioral tests, the brain tissues were harvested for further analysis. Rats neonatally exposed to sevoflurane exhibited decreased freezing time in the fear conditioning contextual test and increased escape latency, decreased time in target quadrant, and number of platform crossings in the Morris water maze test. The sevoflurane-exposed rats had lower hippocampal density of dendritic spines, reduced levels of the brain-derived neurotrophic factor, c-fos protein, microtubule-associated protein 2, synapsin1, postsynaptic density protein 95, pCREB/CREB, CREB binding protein, and acetylated histones H3 and H4, and increased levels of histone deacetylases 3 and 8. These neurobehavioral abnormalities were normalized in the sevoflurane-exposed rats treated with sodium butyrate. Our findings provide evidence that neonatal exposure to sevoflurane induces neurobehavioral abnormalities and long-lasting alterations in histone acetylation; normalization of histone acetylation may alleviate the neurodevelopmental side effects of the anesthetic.


Assuntos
Hipocampo/efeitos dos fármacos , Histonas/metabolismo , Éteres Metílicos/farmacologia , Acetilação/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Privação Materna , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Sevoflurano , Tempo
11.
J Neuroinflammation ; 12: 182, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416717

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by many pathological events, including neuroinflammation and oxidative stress damage. Increasing evidence suggests that parvalbumin (PV) interneurons play a key role in the cognitive process, whereas the dysfunction of these interneurons has been implicated in a number of major psychiatric disorders. Here, we aimed to investigate whether enhanced inflammation and oxidative stress-mediated PV interneuron phenotype loss plays a role in sepsis-induced cognitive impairments. METHODS: Male C57BL/6 mice were subjected to cecal ligation and puncture or sham operation. For the interventional study, the animals were chronically treated with a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin, at 5 mg/kg. The mice were euthanized at the indicated time points, and the brain tissues were harvested for determination of the PV, membrane subunit of NADPH oxidase gp91(phox), and markers of oxidative stress (4-hydroxynonenal and malondialdehyde) and inflammation (tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, IL-6, and IL-10). A separate cohort of animals was used to evaluate the behavioral alterations by the open field and fear conditioning tests. Primary hippocampal neuronal cultures were used to investigate the mechanisms underlying the dysfunction of PV interneurons. RESULTS: Sepsis resulted in cognitive impairments, which was accompanied by selective phenotype loss of PV interneurons and increased gp91(phox), 4-hydroxynonenal, malondialdehyde, IL-1ß, and IL-6 expressions. Notably, these abnormalities could be rescued by apocynin treatment. CONCLUSION: Selective phenotype loss of PV interneurons, as a result of NADPH oxidase 2 (Nox2) activation, might partly contribute to cognitive impairments in a mouse model of SAE.


Assuntos
Transtornos Cognitivos/etiologia , Interneurônios/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Parvalbuminas/metabolismo , Sepse/complicações , Sepse/patologia , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Células Cultivadas , Condicionamento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Medo/psicologia , Hipocampo/citologia , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sepse/tratamento farmacológico , Superóxido Dismutase/metabolismo
12.
J Recept Signal Transduct Res ; 35(2): 165-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25093376

RESUMO

The conclusions of the published reports on the relationship between glutathione S-transferase P1 (GSTP1) gene polymorphism and the risk of small-cell carcinoma of lung cancer are still debated. GSTP1 is one of the important mutant sites reported at present. This meta-analysis was performed to evaluate the association between GSTP1 and the risk of small-cell carcinoma of lung cancer. The association investigations were identified from PubMed and Cochrane Library, and eligible studies were included and synthesized using meta-analysis method. Ten reports were included into this meta-analysis for the association of GSTP1 A/G gene polymorphism and small-cell carcinoma of lung cancer. The G allele and GG genotype were not associated with the susceptibility of risk of small-cell carcinoma in overall populations, East-Asians and Turkish population. However, there was an association between GG genotype with the risk of small-cell carcinoma in Caucasians. In conclusion, GG genotype was associated with the risk of small-cell carcinoma in Caucasian patients with lung cancer. However, GSTP1 A/G gene polymorphism is not associated with the susceptibility of small-cell carcinoma in overall populations, East-Asians and Turkish population.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Glutationa S-Transferase pi/genética , Carcinoma de Pequenas Células do Pulmão/genética , Alelos , Povo Asiático , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Carcinoma de Pequenas Células do Pulmão/patologia
13.
Biomarkers ; 20(6-7): 487-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26616150

RESUMO

Breast cancer is currently the second most common cancer worldwide and the most frequent malignant tumor among women. However, the exact contribution of various allelic alterations remains unclear. This meta-analysis was conducted to evaluate the association of the transforming growth factor ß receptor I 6A/9A (TßR-I 6A/9A) gene polymorphism with breast cancer risk. Relevant studies were identified from PubMed and Cochrane Library on 1 October 2013, and eligible reports were recruited and synthesized. Eleven reports that included a total of 12 studies were recruited into this meta-analysis for the association of the TßR-I 6A/9A gene polymorphism and breast cancer risk. The results indicated that overall the TßR-I 6A allele was associated with breast cancer risk (OR = 1.33, 95% CI: 1.02-1.73, p = 0.04). However, the TßR-I 6A/6A and 9A/9A genotypes were not associated with an increased risk of developing breast cancer (6A/6A: OR = 1.71, 95% CI: 0.95-3.08, p = 0.07; 9A/9A: OR = 0.82, 95% CI: 0.66-1.02, p = 0.08). In the Caucasian population, no such association could be established. In conclusion, the TßR-I 6A allele might represent a risk factor for breast cancer risk, but significantly larger data sets from a larger number of studies, including studies that allow ethnicity, subgroup analysis and environmental impact evaluation, are required to maximize statistical significance and meta-analysis robustness.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Polimorfismo Genético , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Alelos , Feminino , Frequência do Gene , Genótipo , Humanos , Razão de Chances , Receptor do Fator de Crescimento Transformador beta Tipo I , Medição de Risco , Fatores de Risco
14.
J Recept Signal Transduct Res ; 34(6): 458-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24840095

RESUMO

Relationship between vitamin D receptor (VDR) BsmI (rs1544410) gene polymorphism and the type 2 diabetes mellitus (T2DM) susceptibility is still conflicting at present. This meta-analysis was conducted to assess the association between VDR BsmI gene polymorphism and the risk of T2DM. The association studies were identified from PubMed, and Cochrane Library on 1 January 2014, and eligible investigations were included and synthesized using meta-analysis method. Eleven reports were recruited into this meta-analysis for the association of VDR BsmI gene polymorphism with T2DM susceptibility. In overall populations, B allele, BB genotype and bb genotype were not associated with T2DM risk. VDR BsmI gene polymorphism was also not associated with the T2DM risk in Asians and Caucasians. In conclusion, VDR BsmI gene polymorphism was also not associated with T2DM risk in overall populations, Asians and Caucasians. However, more studies should be conducted to confirm it.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Calcitriol/genética , China/epidemiologia , Estudos de Associação Genética , Marcadores Genéticos/genética , Humanos , Incidência , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade
15.
J Recept Signal Transduct Res ; 34(6): 463-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24840096

RESUMO

Relationship between vitamin D receptor (VDR) gene polymorphism and the risk of renal cell carcinoma from the published reports are still conflicting. This study was conducted to evaluate the relationship between VDR ApaI (rs7975232), BsmI (rs1544410), TaqI (rs731236), and Fok1 (rs2228570) gene polymorphism and the risk of renal cell carcinoma using meta-analysis method. The association studies were identified from PubMed, and Cochrane Library on 1 March 2014, and eligible investigations were included and synthesized using meta-analysis method. Five reports were recruited into this meta-analysis for the association of VDR gene polymorphism with renal cell carcinoma susceptibility. In this meta-analysis, the ApaI AA genotype, BsmI BB genotype, Fok1 f allele, and Fok1 FF genotype were associated with the risk of renal cell carcinoma in Asians. However, VDR ApaI, BsmI, TaqI, and Fok1 gene polymorphism were not associated with the risk of renal cell carcinoma in overall populations and in Caucasians. In conclusion, the ApaI AA genotype, BsmI BB genotype, Fok1 f allele, and Fok1 FF genotype were associated with the risk of renal cell carcinoma in Asians. However, more studies should be conducted to confirm it.


Assuntos
Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/genética , Predisposição Genética para Doença/epidemiologia , Neoplasias Renais/epidemiologia , Neoplasias Renais/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Calcitriol/genética , China/epidemiologia , Estudos de Associação Genética , Marcadores Genéticos/genética , Predisposição Genética para Doença/genética , Humanos , Incidência , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade
16.
Biol Psychiatry Glob Open Sci ; 4(6): 100359, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39282654

RESUMO

Background: Having a sibling with autism spectrum disorder is a risk factor for autism spectrum disorder. We used a rat model in which the general anesthetic sevoflurane (SEVO) induces autism spectrum disorder-like neurodevelopmental abnormalities to test whether they can be transmitted via cohabitation. Methods: Male rat pups from several litters were mixed and randomized to 3 new litter types: SEVO-exposed (SEVO), SEVO-unexposed (control), and equal numbers of SEVO-exposed and SEVO-unexposed (MIXED). After weaning, rats in experiment 1 were housed with littermates in SEVO, control, and MIXED (MIXED-exposed and MIXED-unexposed) pairs. In experiment 2, MIXED-exposed and MIXED-unexposed rats were paired with an unfamiliar naïve cagemate. Corticosterone levels, gene expression, central inflammatory markers (experiment 1), and behavior and corticosterone levels (experiment 2) were assessed in adulthood. Results: In experiment 1, compared with control rats, SEVO rats exhibited abnormalities in the hypothalamic-pituitary-adrenal axis, inflammatory markers, oxytocin, arginine vasopressin, and DNA methylation systems. Almost all these measures in MIXED-exposed and MIXED-unexposed rats were statistically indistinguishable from and similar to those in SEVO or control rats, with most measures in MIXED rats being similar to those in SEVO rats. Experiment 2 showed that pairing with unfamiliar, naïve rats after weaning caused MIXED-unexposed and MIXED-exposed rats' behavior to be no different from that of control and SEVO rats, respectively; however, the 2 groups of MIXED rats also did not differ from each other. Conclusions: These findings suggest that neurodevelopmental abnormalities can be transmitted to otherwise healthy individuals through interactions during cohabitation; however, subsequent pairing with unfamiliar, naïve cohabitants may weaken this interaction effect.


This study was driven by the results of human studies that found poorer neurocognitive performance than expected in both twins, even though only one of the twins had early-life exposure to general anesthesia. We evaluated whether rats housed together in the same cage but discordant for neonatal exposure to the general anesthetic sevoflurane share similar neurodevelopmental abnormalities in adulthood. The gene expression, neuroendocrine, neuroinflammatory marker, and behavioral measurements revealed that cohoused neonatally sevoflurane-exposed and sevoflurane-unexposed cagemates exhibited similar deficiencies. These findings suggest that in studies of anesthesia-induced neurodevelopmental abnormalities in particular, and neurocognitive development in general, interactions between cohabitants should be considered as a factor that may influence outcomes.

17.
J Neurotrauma ; 41(7-8): 969-984, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38279844

RESUMO

Children of parents with traumatic brain injury (TBI) are more likely to develop psychiatric disorders. This association is usually attributed to TBI-induced changes in parents' personality and families' social environment. We tested the hypothesis that offspring of young adult male rats with TBI develop neurodevelopmental abnormalities in the absence of direct social contact with sires. Male Sprague-Dawley rats (F0 generation) in the TBI group underwent moderate TBI via a midline fluid percussion injury that involved craniectomy under sevoflurane (SEVO) anesthesia for 40 min on post-natal Day 60 (P60), while F0 rats in the control group were placed in a new cage, one per cage, for the equivalent time duration. A subset of F0 rats was sacrificed on P66 to assess acute changes in hypothalamic-pituitary-adrenal (HPA) axis and inflammation markers. The remaining F0 males were mated with naive females on P90 to generate offspring (F1 generation). The F0 males and F1 males and females were sequentially evaluated in the elevated plus maze, for pre-pulse inhibition of acoustic startle, in the Morris water maze, and for resting and stress levels of serum corticosterone starting on ∼P105 (F0) and ∼P60 (F1), followed by tissue collection for further analyses. Acutely, the F0 TBI males had messenger RNA (mRNA) transcripts altered to support an increased hypothalamic and hippocampal Na+-K+-Cl- (Slc12a2) Cl- importer / K+-2Cl- (Slc12a5) Cl- exporter ratio and decreased hippocampal glucocorticoid receptors (Nr3c1), as well as increased serum levels of corticosterone, interleukin-1ß (IL-1ß), and biomarkers of activated hippocampal microglia and astrocytes. Long-term, F0 TBI rats exhibited increased corticosterone concentrations at rest and under stress, anxiety-like behavior, impaired sensory-motor gating, and impaired spatial memory. These abnormalities were underpinned by reduced mRNA levels of hypothalamic and hippocampal mineralocorticoid receptors (Nr3c2), hippocampal Nr3c1, and hypothalamic brain-derived neurotrophic factor (Bdnf), as well as elevated serum levels of IL-1ß, and biomarkers of activated hippocampal microglia and astrocytes. F1 male offspring of TBI sires exhibited abnormalities in all behavioral tests, while their F1 female counterparts had abnormal pre-pulse inhibition responses only. F1 male offspring of TBI sires also had reduced mRNA levels of hippocampal Nr3c1 and Nr3c2, as well as hypothalamic and hippocampal Bdnf, whereas increases in inflammatory markers were more profound in F1 females. These findings suggest that offspring of sires with a history of a moderate TBI that involved craniectomy under SEVO anesthesia for 40 min, develop sex-dependent neurobehavioral abnormalities in the absence of direct social interaction between the sire and the offspring.


Assuntos
Lesões Encefálicas Traumáticas , Corticosterona , Humanos , Criança , Ratos , Animais , Masculino , Feminino , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo , Sevoflurano , Hipocampo , Lesões Encefálicas Traumáticas/complicações , RNA Mensageiro , Biomarcadores
18.
Biology (Basel) ; 12(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37106766

RESUMO

Accelerated neurocognitive decline after general anesthesia/surgery, also known as perioperative neurocognitive disorder (PND), is a widely recognized public health problem that may affect millions of patients each year. Advanced age, with its increasing prevalence of heightened stress, inflammation, and neurodegenerative alterations, is a consistent contributing factor to the development of PND. Although a strong homeostatic reserve in young adults makes them more resilient to PND, animal data suggest that young adults with pathophysiological conditions characterized by excessive stress and inflammation may be vulnerable to PND, and this altered phenotype may be passed to future offspring (intergenerational PND). The purpose of this narrative review of data in the literature and the authors' own experimental findings in rodents is to draw attention to the possibility of intergenerational PND, a new phenomenon which, if confirmed in humans, may unravel a big new population that may be affected by parental PND. In particular, we discuss the roles of stress, inflammation, and epigenetic alterations in the development of PND. We also discuss experimental findings that demonstrate the effects of surgery, traumatic brain injury, and the general anesthetic sevoflurane that interact to induce persistent dysregulation of the stress response system, inflammation markers, and behavior in young adult male rats and in their future offspring who have neither trauma nor anesthetic exposure (i.e., an animal model of intergenerational PND).

19.
Kaohsiung J Med Sci ; 39(8): 758-768, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37096653

RESUMO

Long noncoding RNAs (LncRNAs) are essential to regulate the pathogenesis of coronary artery disease (CAD). This study was conducted to analyze the functionality of long noncoding RNA cancer susceptibility candidate 11 (lncRNA CASC11) in oxidized low-density lipoprotein (ox-LDL)-induced injury of cardiac microvascular endothelial cells (CMECs). CMECs were treated with ox-LDL to induce the CAD cell model. The cellular expression levels of CASC11 and histone deacetylase 4 (HDAC4) were determined by real-time quantitative polymerase chain reaction or Western blot assay. Cell absorbance, apoptosis, angiogenesis, and inflammation were evaluated by cell counting kit-8, flow cytometry, tube formation, and enzyme-linked immunosorbent assays. The subcellular localization of CASC11 was examined by the nuclear/cytoplasmic fractionation assay. The binding of human antigen R (HuR) to CASC11 and HDAC4 was analyzed by RNA immunoprecipitation. HDAC4 stability was determined after actinomycin D treatment. CASC11 was found to be decreased in the CAD cell model. CASC11 upregulation increased cell viability and angiogenesis and reduced apoptosis and inflammation. CASC11 bound to HuR and improved HDAC4 expression. HDAC4 downregulation counteracted the protective role of CASC11 overexpression in CMECs. In summary, CASC11 alleviated ox-LDL-induced injury of CMECs by binding to HuR and stabilizing HDAC4.


Assuntos
Doença da Artéria Coronariana , Lipoproteínas LDL , MicroRNAs , RNA Longo não Codificante , Humanos , Apoptose/genética , Proliferação de Células/genética , Células Endoteliais , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipoproteínas LDL/farmacologia , MicroRNAs/genética , Proteínas Repressoras/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Cima/genética
20.
Am J Clin Oncol ; 46(5): 193-198, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36991528

RESUMO

OBJECTIVES: Investigate the survival of patients with stage III colorectal cancer (CRC) treated with immediate postoperative intraperitoneal chemotherapy. METHODS: The clinical data of 195 patients with stage III CRC admitted to The First Affiliated Hospital of Wenzhou Medical University from June 2017 to June 2018 were retrospectively analyzed. The patients were divided into an observation group and a control group, both groups were treated with the routine laparoscopic radical operation, on the basis of which, the patients in the observation group were treated with intraperitoneal perfusion chemotherapy during the operation. The local recurrence, abdominal cavity metastasis, and liver metastasis were followed up, and the time of disease recurrence and total survival were recorded. RESULTS: The survival analysis showed that there was a significant difference in progression-free survival (χ 2 = 5.416, P = 0.020) and overall survival (χ 2 = 4.673, P = 0.031) between the observation group and the control group. CONCLUSIONS: During laparoscopic radical resection of CRC, the use of intraperitoneal chemotherapy with raltitrexed can achieve satisfactory results and improve the survival rate of patients with stage III CRC, perioperative use of raltitrexed has been shown to be beneficial in terms of overall survival and progression-free survival.


Assuntos
Neoplasias Colorretais , Recidiva Local de Neoplasia , Humanos , Estudos Retrospectivos , Estadiamento de Neoplasias , Recidiva Local de Neoplasia/patologia , Neoplasias Colorretais/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa