Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Biol Chem ; 296: 100602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785359

RESUMO

The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph-mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.


Assuntos
Membrana Celular/metabolismo , Plantas/metabolismo , Esfingolipídeos/metabolismo , Biofísica , Polissacarídeos/metabolismo , Especificidade da Espécie , Esfingolipídeos/química
2.
Plant Cell Environ ; 45(4): 1082-1095, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859447

RESUMO

Oxylipins are lipid-derived molecules that are ubiquitous in eukaryotes and whose functions in plant physiology have been widely reported. They appear to play a major role in plant immunity by orchestrating reactive oxygen species (ROS) and hormone-dependent signalling pathways. The present work focuses on the specific case of fatty acid hydroperoxides (HPOs). Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this study, the potential of 13(S)-hydroperoxy-(9Z, 11E)-octadecadienoic acid (13-HPOD) and 13(S)-hydroperoxy-(9Z, 11E, 15Z)-octadecatrienoic acid (13-HPOT), as plant defence elicitors and the underlying mechanism of action is investigated. Arabidopsis thaliana leaf resistance to Botrytis cinerea was observed after root application with HPOs. They also activate early immunity-related defence responses, like ROS. As previous studies have demonstrated their ability to interact with plant plasma membranes (PPM), we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. The relationship between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events.


Assuntos
Peróxidos Lipídicos , Plantas , Membrana Celular/metabolismo , Peróxidos Lipídicos/metabolismo , Percepção , Plantas/metabolismo , Espécies Reativas de Oxigênio
3.
J Comput Chem ; 42(14): 1028-1033, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33709443

RESUMO

Cellular membranes are composed of a wide diversity of lipid species in varying proportions and these compositions are representative of the organism, cellular type and organelle to which they belong. Because models of these molecular systems simulated by MD steadily gain in size and complexity, they are increasingly representative of specific compositions and behaviors of biological membranes. Due to the number of lipid species involved, of force fields and topologies and because of the complexity of membrane objects that have been simulated, LIMONADA has been developed as an open database allowing to handle the various aspects of lipid membrane simulation. LIMONADA presents published membrane patches with their simulation files and the cellular membrane it models. Their compositions are then detailed based on the lipid identification from LIPID MAPS database plus the lipid topologies and the force field used. LIMONADA is freely accessible on the web at https://limonada.univ-reims.fr/.


Assuntos
Membrana Celular/química , Lipídeos/química , Simulação de Dinâmica Molecular , Bases de Dados Factuais
4.
EMBO Rep ; 20(8): e47182, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286648

RESUMO

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Proteínas de Membrana/genética , Plasmodesmos/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Glicosiltransferases/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/deficiência , Fosfolipídeos/metabolismo , Células Vegetais , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Plasmodesmos/ultraestrutura , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Proteína Vermelha Fluorescente
5.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502302

RESUMO

In recent years, the development of new bio-based products for biocontrol has been gaining importance as it contributes to reducing the use of synthetic herbicides in agriculture. Conventional herbicides (i.e., the ones with synthetic molecules) can lead to adverse effects such as human diseases (cancers, neurodegenerative diseases, reproductive perturbations, etc.) but also to disturbing the environment because of their drift in the air, transport throughout aquatic systems and persistence across different environments. The use of natural molecules seems to be a very good alternative for maintaining productive agriculture but without the negative side effects of synthetic herbicides. In this context, essential oils and their components are increasingly studied in order to produce several categories of biopesticides thanks to their well-known biocidal activities. However, these molecules can also be potentially hazardous to humans and the environment. This article reviews the state of the literature and regulations with regard to the potential risks related to the use of essential oils as bioherbicides in agricultural and horticultural applications.


Assuntos
Agentes de Controle Biológico/farmacologia , Herbicidas/farmacologia , Óleos Voláteis/farmacologia , Controle Biológico de Vetores/tendências , Doenças das Plantas/prevenção & controle , Humanos , Medição de Risco
6.
Molecules ; 25(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283763

RESUMO

Saponins are plant secondary metabolites. There are associated with defensive roles due to their cytotoxicity and are active against microorganisms. Saponins are frequently targeted to develop efficient drugs. Plant biomass containing saponins deserves sustained interest to develop high-added value applications. A key issue when considering the use of saponins for human healthcare is their toxicity that must be modulated before envisaging any biomedical application. This can only go through understanding the saponin-membrane interactions. Quinoa is abundantly consumed worldwide, but the quinoa husk is discarded due to its astringent taste associated with its saponin content. Here, we focus on the saponins of the quinoa husk extract (QE). We qualitatively and quantitively characterized the QE saponins using mass spectrometry. They are bidesmosidic molecules, with two oligosaccharidic chains appended on the aglycone with two different linkages; a glycosidic bond and an ester function. The latter can be hydrolyzed to prepare monodesmosidic molecules. The microwave-assisted hydrolysis reaction was optimized to produce monodesmosidic saponins. The membranolytic activity of the saponins was assayed based on their hemolytic activity that was shown to be drastically increased upon hydrolysis. In silico investigations confirmed that the monodesmosidic saponins interact preferentially with a model phospholipid bilayer, explaining the measured increased hemolytic activity.


Assuntos
Chenopodium quinoa/química , Micro-Ondas , Extratos Vegetais/química , Saponinas/química , Cromatografia Líquida , Hidrólise , Espectrometria de Massas , Estrutura Molecular , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Saponinas/análise , Saponinas/isolamento & purificação , Relação Estrutura-Atividade , Temperatura
7.
J Exp Bot ; 70(1): 329-341, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418580

RESUMO

The P1B ATPase heavy metal ATPase 4 (HMA4) is responsible for zinc and cadmium translocation from roots to shoots in Arabidopsis thaliana. It couples ATP hydrolysis to cytosolic domain movements, enabling metal transport across the membrane. The detailed mechanism of metal permeation by HMA4 through the membrane remains elusive. Here, homology modeling of the HMA4 transmembrane region was conducted based on the crystal structure of a ZntA bacterial homolog. The analysis highlighted amino acids forming a metal permeation pathway, whose importance was subsequently investigated functionally through mutagenesis and complementation experiments in plants. Although the zinc pathway displayed overall conservation among the two proteins, significant differences were observed, especially in the entrance area with altered electronegativity and the presence of a ionic interaction/hydrogen bond network. The analysis also newly identified amino acids whose mutation results in total or partial loss of the protein function. In addition, comparison of zinc and cadmium accumulation in shoots of A. thaliana complemented lines revealed a number of HMA4 mutants exhibiting different abilities in zinc and cadmium translocation. These observations could be instrumental to design low cadmium-accumulating crops, hence decreasing human cadmium exposure.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Zinco/metabolismo , Adenosina Trifosfatases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Modelos Genéticos , Homologia Estrutural de Proteína
8.
Nature ; 501(7467): 430-4, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23965626

RESUMO

The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1). Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR (ref. 5), TLF-2 enters trypanosomes independently of TbHpHbR (refs 4, 5). APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic ß-sheet of the T. b. gambiense-specific glycoprotein (TgsGP), which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.


Assuntos
Apolipoproteínas/sangue , Apolipoproteínas/metabolismo , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Trypanosoma brucei gambiense/fisiologia , África , Animais , Animais Geneticamente Modificados , Apolipoproteína L1 , Apolipoproteínas/antagonistas & inibidores , Apolipoproteínas/toxicidade , Membrana Celular/química , Membrana Celular/metabolismo , Cisteína Proteases/metabolismo , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Hemólise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolismo dos Lipídeos , Lipoproteínas HDL/antagonistas & inibidores , Lipoproteínas HDL/química , Lipoproteínas HDL/toxicidade , Parasitos/patogenicidade , Parasitos/fisiologia , Estrutura Secundária de Proteína , Soro/química , Soro/parasitologia , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
9.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226833

RESUMO

The olfactory sense is the dominant sensory perception for many animals. When Richard Axel and Linda B. Buck received the Nobel Prize in 2004 for discovering the G protein-coupled receptors' role in olfactory cells, they highlighted the importance of olfaction to the scientific community. Several theories have tried to explain how cells are able to distinguish such a wide variety of odorant molecules in a complex context in which enantiomers can result in completely different perceptions and structurally different molecules. Moreover, sex, age, cultural origin, and individual differences contribute to odor perception variations that complicate the picture. In this article, recent advances in olfaction theory are presented, and future trends in human olfaction such as structure-based odor prediction and artificial sniffing are discussed at the frontiers of chemistry, physiology, neurobiology, and machine learning.


Assuntos
Odorantes , Percepção Olfatória , Olfato , Animais , Nariz Eletrônico , Humanos , Aprendizado de Máquina , Odorantes/análise , Receptores Odorantes/metabolismo
10.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426453

RESUMO

Since the 50's, the massive and "environmental naïve" use of synthetic chemistry has revolutionized the farming community facing the dramatic growth of demography. However, nowadays, the controversy grows regarding the long-term harmful effects of these products on human health and the environment. In this context, the use of essential oils (EOs) could be an alternative to chemical products and a better understanding of their mode of biological action for new and optimal applications is of importance. Indeed, if the biocidal effects of some EOs or their components have been at least partly elucidated at the molecular level, very little is currently known regarding their mechanism of action as herbicides at the molecular level. Here, we showed that cinnamon and Java citronella essential oils and some of their main components, i.e.,, cinnamaldehyde (CIN), citronellal (CitA), and citronellol (CitO) could act as efficient herbicides when spread on A. thaliana leaves. The individual EO molecules are small amphiphiles, allowing for them to cross the mesh of cell wall and directly interact with the plant plasma membrane (PPM), which is one of the potential cellular targets of EOs. Hence, we investigated and characterized their interaction with biomimetic PPM while using an integrative biophysical approach. If CitO and CitA, maintaining a similar chemical structure, are able to interact with the model membranes without permeabilizing effect, CIN belonging to the phenylpropanoid family, is not. We suggested that different mechanisms of action for the two types of molecules can occur: while the monoterpenes could disturb the lipid organization and/or domain formation, the phenylpropanoid CIN could interact with membrane receptors.


Assuntos
Arabidopsis/efeitos dos fármacos , Cinnamomum zeylanicum/química , Cymbopogon/química , Herbicidas/química , Óleos Voláteis/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/metabolismo , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Herbicidas/metabolismo , Óleos Voláteis/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
11.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223492

RESUMO

By manipulating the various physicochemical properties of amino acids, the design of peptides with specific self-assembling properties has been emerging for more than a decade. In this context, short peptides possessing detergent properties (so-called "peptergents") have been developed to self-assemble into well-ordered nanostructures that can stabilize membrane proteins for crystallization. In this study, the peptide with "peptergency" properties, called ADA8 and extensively described by Tao et al., is studied by molecular dynamic simulations for its self-assembling properties in different conditions. In water, it spontaneously forms beta sheets with a ß barrel-like structure. We next simulated the interaction of this peptide with a membrane protein, the bacteriorhodopsin, in the presence or absence of a micelle of dodecylphosphocholine. According to the literature, the peptergent ADA8 is thought to generate a belt of ß structures around the hydrophobic helical domain that could help stabilize purified membrane proteins. Molecular dynamic simulations are here used to image this mechanism and provide further molecular details for the replacement of detergent molecules around the protein. In addition, we generalized this behavior by designing an amphipathic peptide with beta propensity, which was called ABZ12. Both peptides are able to surround the membrane protein and displace surfactant molecules. To our best knowledge, this is the first molecular mechanism proposed for "peptergency".


Assuntos
Detergentes/química , Simulação de Dinâmica Molecular , Peptídeos/química , Aminoácidos/química , Detergentes/farmacologia , Proteínas de Membrana/química , Peptídeos/farmacologia , Conformação Proteica , Relação Estrutura-Atividade , Água/química
12.
J Biol Chem ; 291(26): 13864-74, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27189936

RESUMO

Bacterial membranes are highly organized, containing specific microdomains that facilitate distinct protein and lipid assemblies. Evidence suggests that cardiolipin molecules segregate into such microdomains, probably conferring a negative curvature to the inner plasma membrane during membrane fission upon cell division. 3',6-Dinonyl neamine is an amphiphilic aminoglycoside derivative active against Pseudomonas aeruginosa, including strains resistant to colistin. The mechanisms involved at the molecular level were identified using lipid models (large unilamellar vesicles, giant unilamelllar vesicles, and lipid monolayers) that mimic the inner membrane of P. aeruginosa The study demonstrated the interaction of 3',6-dinonyl neamine with cardiolipin and phosphatidylglycerol, two negatively charged lipids from inner bacterial membranes. This interaction induced membrane permeabilization and depolarization. Lateral segregation of cardiolipin and membrane hemifusion would be critical for explaining the effects induced on lipid membranes by amphiphilic aminoglycoside antibiotics. The findings contribute to an improved understanding of how amphiphilic aminoglycoside antibiotics that bind to negatively charged lipids like cardiolipin could be promising antibacterial compounds.


Assuntos
Cardiolipinas/química , Framicetina/química , Fosfatidilgliceróis/química , Pseudomonas aeruginosa/química
13.
Biochim Biophys Acta Biomembr ; 1859(3): 331-339, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28007479

RESUMO

Many Pseudomonas spp. produce cyclic lipodepsipeptides (CLPs), which, besides their role in biological functions such as motility, biofilm formation and interspecies interactions, are antimicrobial. It has been established that interaction with the cellular membrane is central to the mode of action of CLPs. In this work, we focus on the CLPs of the so-called viscosin group, aiming to assess the impact of the main structural variations observed within this group on both the antimicrobial activity and the interaction with model membranes. The antimicrobial activity of viscosin, viscosinamide A, WLIP and pseudodesmin A were all tested on a broad panel of mainly Gram-positive bacteria. Their capacity to permeabilize or fuse PG/PE/cardiolipin model membrane vesicles is assessed using fluorescent probes. We find that the Glu2/Gln2 structural variation within the viscosin group is the main factor that influences both the membrane permeabilization properties and the minimum inhibitory concentration of bacterial growth, while the configuration of the Leu5 residue has no apparent effect. The CLP-membrane interactions were further evaluated using CD and FT-IR spectroscopy on model membranes consisting of PG/PE/cardiolipin or POPC with or without cholesterol. In contrast to previous studies, we observe no conformational change upon membrane insertion. The CLPs interact both with the polar heads and aliphatic tails of model membrane systems, altering bilayer fluidity, while cholesterol reduces CLP insertion depth.


Assuntos
Bicamadas Lipídicas/química , Lipopeptídeos/química , Peptídeos Cíclicos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bicamadas Lipídicas/metabolismo , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Permeabilidade/efeitos dos fármacos , Pseudomonas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Plant Physiol ; 170(1): 367-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518342

RESUMO

The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) 'Bright Yellow 2' cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Nicotiana/química , Esfingolipídeos/química , Técnicas de Cultura de Células/métodos , Membrana Celular/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glicoesfingolipídeos/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Modelos Moleculares , Fitosteróis/química , Fitosteróis/metabolismo , Folhas de Planta/química , Esfingolipídeos/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo
15.
Langmuir ; 33(38): 9979-9987, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28749675

RESUMO

Natural and synthetic amphiphilic molecules including lipopeptides, lipopolysaccharides, and glycolipids are able to induce defense mechanisms in plants. In the present work, the perception of two synthetic C14 rhamnolipids, namely, Alk-RL and Ac-RL, differing only at the level of the lipid tail terminal group have been investigated using biological and biophysical approaches. We showed that Alk-RL induces a stronger early signaling response in tobacco cell suspensions than does Ac-RL. The interactions of both synthetic RLs with simplified biomimetic membranes were further analyzed using experimental and in silico approaches. Our results indicate that the interactions of Alk-RL and Ac-RL with lipids were different in terms of insertion and molecular responses and were dependent on the lipid composition of model membranes. A more favorable insertion of Alk-RL than Ac-RL into lipid membranes is observed. Alk-RL forms more stable molecular assemblies than Ac-RL with phospholipids and sterols. At the molecular level, the presence of sterols tends to increase the RLs' interaction with lipid bilayers, with a fluidizing effect on the alkyl chains. Taken together, our findings suggest that the perception of these synthetic RLs at the membrane level could be related to a lipid-driven process depending on the organization of the membrane and the orientation of the RLs within the membrane and is correlated with the induction of early signaling responses in tobacco cells.


Assuntos
Glicolipídeos/química , Biomimética , Membrana Celular , Bicamadas Lipídicas , Lipídeos de Membrana
16.
Biochim Biophys Acta ; 1838(12): 3171-3190, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25175476

RESUMO

Plasma membranes are complex entities common to all living cells. The basic principle of their organization appears very simple, but they are actually of high complexity and represent very dynamic structures. The interactions between bioactive molecules and lipids are important for numerous processes, from drug bioavailability to viral fusion. The cell membrane is a carefully balanced environment and any change inflicted upon its structure by a bioactive molecule must be considered in conjunction with the overall effect that this may have on the function and integrity of the membrane. Conceptually, understanding the molecular mechanisms by which bioactive molecules interact with cell membranes is of fundamental importance. Lipid specificity is a key factor for the detailed understanding of the penetration and/or activity of lipid-interacting molecules and of mechanisms of some diseases. Further investigation in that way should improve drug discovery and development of membrane-active molecules in many domains such as health, plant protection or microbiology. In this review, we will present complementary biophysical approaches that can give information about lipid specificity at a molecular point of view. Examples of application will be given for different molecule types, from biomolecules to pharmacological drugs. A special emphasis is given to cyclic lipopeptides since they are interesting molecules in the scope of this review by combining a peptidic moiety and a lipidic tail and by exerting their activity via specific interactions with the plasma membrane.

17.
Biochim Biophys Acta ; 1828(2): 499-509, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23000699

RESUMO

CADY is a cell-penetrating peptide spontaneously making non-covalent complexes with Short interfering RNAs (siRNAs) in water. Neither the structure of CADY nor that of the complexes is resolved. We have calculated and analyzed 3D models of CADY and of the non-covalent CADY-siRNA complexes in order to understand their formation and stabilization. Data from the ab initio calculations and molecular dynamics support that, in agreement with the experimental data, CADY is a polymorphic peptide partly helical. Taking into consideration the polymorphism of CADY, we calculated and compared several complexes with peptide/siRNA ratios of up to 40. Four complexes were run by using molecular dynamics. The initial binding of CADYs is essentially due to the electrostatic interactions of the arginines with siRNA phosphates. Due to a repetitive arginine motif (XLWR(K)) in CADY and to the numerous phosphate moieties in the siRNA, CADYs can adopt multiple positions at the siRNA surface leading to numerous possibilities of complexes. Nevertheless, several complex properties are common: an average of 14±1 CADYs is required to saturate a siRNA as compared to the 12±2 CADYs experimentally described. The 40 CADYs/siRNA that is the optimal ratio for vector stability always corresponds to two layers of CADYs per siRNA. When siRNA is covered by the first layer of CADYs, the peptides still bind despite the electrostatic repulsion. The peptide cage is stabilized by hydrophobic CADY-CADY contacts thanks to CADY polymorphism. The analysis demonstrates that the hydrophobicity, the presence of several positive charges and the disorder of CADY are mandatory to make stable the CADY-siRNA complexes.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos/química , RNA Interferente Pequeno/metabolismo , Motivos de Aminoácidos , Arginina/química , Vetores Genéticos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica , Fatores de Tempo
18.
Biochim Biophys Acta ; 1828(2): 801-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23159483

RESUMO

Surfactin, a bacterial amphiphilic lipopeptide is attracting more and more attention in view of its bioactive properties which are in relation with its ability to interact with lipids of biological membranes. In this work, we investigated the effect of surfactin on membrane structure using model of membranes, vesicles as well as supported bilayers, presenting coexistence of fluid-disordered (DOPC) and gel (DPPC) phases. A range of complementary methods was used including AFM, ellipsometry, dynamic light scattering, fluorescence measurements of Laurdan, DPH, calcein release, and octadecylrhodamine B dequenching. Our findings demonstrated that surfactin concentration is critical for its effect on the membrane. The results suggest that the presence of rigid domains can play an essential role in the first step of surfactin insertion and that surfactin interacts both with the membrane polar heads and the acyl chain region. A mechanism for the surfactin lipid membrane interaction, consisting of three sequential structural and morphological changes, is proposed. At concentrations below the CMC, surfactin inserted at the boundary between gel and fluid lipid domains, inhibited phase separation and stiffened the bilayer without global morphological change of liposomes. At concentrations close to CMC, surfactin solubilized the fluid phospholipid phase and increased order in the remainder of the lipid bilayer. At higher surfactin concentrations, both the fluid and the rigid bilayer structures were dissolved into mixed micelles and other structures presenting a wide size distribution.


Assuntos
Membrana Celular/metabolismo , Lipídeos/química , Lipopeptídeos/química , Peptídeos Cíclicos/química , 1,2-Dipalmitoilfosfatidilcolina/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Fenômenos Fisiológicos Bacterianos , Calorimetria/métodos , Difenilexatrieno/química , Fluoresceínas/química , Lauratos/química , Luz , Bicamadas Lipídicas/química , Lipossomos/química , Micelas , Microscopia de Força Atômica/métodos , Microscopia de Fluorescência/métodos , Fosfatidilcolinas/química , Fosfolipídeos/química , Rodaminas/química , Espalhamento de Radiação , Espectrometria de Fluorescência/métodos
19.
Langmuir ; 30(16): 4556-69, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24690040

RESUMO

Saponins and triterpenic acids have been shown to be able to interact with lipid membranes and domains enriched with cholesterol (rafts). How saponins are able to modulate lipid phase separation in membranes and the role of the sugar chains for this activity is unknown. We demonstrate in a binary membrane model composed of DMPC/Chol (3:1 mol/mol) that the saponin α-hederin and its aglycone presenting no sugar chain, the triterpenic acid hederagenin, are able to induce the formation of lipid domains. We show on multilamellar vesicles (MLV), giant unilamellar vesicles (GUV), and supported planar bilayers (SPB) that the presence of sugar units on the sapogenin accelerates domain formation and increases the proportion of sterols within these domains. The domain shape is also influenced by the presence of sugars because α-hederin and hederagenin induce the formation of tubular and spherical domains, respectively. These highly curved structures should result from the induction of membrane curvature by both compounds. In addition to the formation of domains, α-hederin and hederagenin permeabilize GUV. The formation of membrane holes by α-hederin comes along with the accumulation of lipids into nonbilayer structures in SPB. This process might be responsible for the permeabilizing activity of both compounds. In LUV, permeabilization by α-hederin was sterol-dependent. The biological implications of our results and the mechanisms involved are discussed in relation to the activity of saponins and triterpenic acids on membrane rafts, cancer cells, and hemolysis.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Ácido Oleanólico/análogos & derivados , Saponinas/química , Microdomínios da Membrana , Ácido Oleanólico/química
20.
Plant Physiol ; 160(2): 624-37, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22855937

RESUMO

The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Potexvirus/metabolismo , Solanum tuberosum/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Transporte/genética , Membrana Celular/genética , Membrana Celular/virologia , Dicroísmo Circular , Clonagem Molecular , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação , Fosfoproteínas/genética , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Potexvirus/patogenicidade , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Transporte Proteico , Solanum tuberosum/genética , Solanum tuberosum/virologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa