Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 34(21): 2633-51, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26330466

RESUMO

Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA-binding protein genes. Here, we show that extensive down-regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS-causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re-organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.


Assuntos
Esclerose Lateral Amiotrófica/genética , MicroRNAs/biossíntese , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/patologia , Animais , Sequência de Bases , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/metabolismo , Regulação para Baixo , Avaliação Pré-Clínica de Medicamentos , Enoxacino/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Neurônios Motores/metabolismo , Interferência de RNA , Processamento Pós-Transcricional do RNA , Ribonuclease III/metabolismo , Estresse Fisiológico , Superóxido Dismutase/genética , Superóxido Dismutase-1
2.
J Cell Biol ; 166(7): 1055-67, 2004 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-15452146

RESUMO

Aging is believed to be a nonadaptive process that escapes the force of natural selection. Here, we challenge this dogma by showing that yeast laboratory strains and strains isolated from grapes undergo an age- and pH-dependent death with features of mammalian programmed cell death (apoptosis). After 90-99% of the population dies, a small mutant subpopulation uses the nutrients released by dead cells to grow. This adaptive regrowth is inversely correlated with protection against superoxide toxicity and life span and is associated with elevated age-dependent release of nutrients and increased mutation frequency. Computational simulations confirm that premature aging together with a relatively high mutation frequency can result in a major advantage in adaptation to changing environments. These results suggest that under conditions that model natural environments, yeast organisms undergo an altruistic and premature aging and death program, mediated in part by superoxide. The role of similar pathways in the regulation of longevity in organisms ranging from yeast to mice raises the possibility that mammals may also undergo programmed aging.


Assuntos
Adaptação Fisiológica/genética , Envelhecimento/metabolismo , Saccharomyces cerevisiae/metabolismo , Superóxidos/metabolismo , Envelhecimento/genética , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Meios de Cultura/farmacologia , Meio Ambiente , Peróxido de Hidrogênio/farmacologia , Mutação/efeitos dos fármacos , Mutação/genética , Estresse Oxidativo/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Especificidade da Espécie , Inanição
3.
Genetics ; 163(1): 35-46, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12586694

RESUMO

Signal transduction pathways inactivated during periods of starvation are implicated in the regulation of longevity in organisms ranging from yeast to mammals, but the mechanisms responsible for life-span extension are poorly understood. Chronological life-span extension in S. cerevisiae cyr1 and sch9 mutants is mediated by the stress-resistance proteins Msn2/Msn4 and Rim15. Here we show that mitochondrial superoxide dismutase (Sod2) is required for survival extension in yeast. Deletion of SOD2 abolishes life-span extension in sch9Delta mutants and decreases survival in cyr1:mTn mutants. The overexpression of Sods--mitochondrial Sod2 and cytosolic CuZnSod (Sod1)--delays the age-dependent reversible inactivation of mitochondrial aconitase, a superoxide-sensitive enzyme, and extends survival by 30%. Deletion of the RAS2 gene, which functions upstream of CYR1, also doubles the mean life span by a mechanism that requires Msn2/4 and Sod2. These findings link mutations that extend chronological life span in S. cerevisiae to superoxide dismutases and suggest that the induction of other stress-resistance genes regulated by Msn2/4 and Rim15 is required for maximum longevity extension.


Assuntos
Proteínas Fúngicas , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/metabolismo , Aconitato Hidratase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mutação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
4.
J Biol Chem ; 279(31): 32055-62, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15166213

RESUMO

Among the phenotypes of Saccharomyces cerevisiae mutants lacking CuZn-superoxide dismutase (Sod1p) is an aerobic lysine auxotrophy; in the current work we show an additional leaky auxotrophy for leucine. The lysine and leucine biosynthetic pathways each contain a 4Fe-4S cluster enzyme homologous to aconitase and likely to be superoxide-sensitive, homoaconitase (Lys4p) and isopropylmalate dehydratase (Leu1p), respectively. We present evidence that direct aerobic inactivation of these enzymes in sod1 Delta yeast results in the auxotrophies. Located in the cytosol and intermembrane space of the mitochondria, Sod1p likely provides direct protection of the cytosolic enzyme Leu1p. Surprisingly, Lys4p does not share a compartment with Sod1p but is located in the mitochondrial matrix. The activity of a second matrix protein, the tricarboxylic acid cycle enzyme aconitase, was similarly lowered in sod1 Delta mutants. We measured only slight changes in total mitochondrial iron and found no detectable difference in mitochondrial "free" (EPR-detectable) iron making it unlikely that a gross defect in mitochondrial iron metabolism is the cause of the decreased enzyme activities. Thus, we conclude that when Sod1p is absent a lysine auxotrophy is induced because Lys4p is inactivated in the matrix by superoxide that originates in the intermembrane space and diffuses across the inner membrane.


Assuntos
Aminoácidos/biossíntese , Proteínas Ferro-Enxofre/química , Superóxido Dismutase/química , Superóxidos/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Genótipo , Hidroliases/química , Ferro/química , Leucina/química , Lisina/química , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Paraquat , Fenótipo , Plasmídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Superóxidos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa