Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Anim Genet ; 55(1): 47-54, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37946616

RESUMO

Genetic selection for milk production traits in US Holsteins has affected numerous genes associated with reproduction and immunity. This study compares the transcriptomic response of peripheral blood mononuclear cells to an in vitro Brucella abortus strain RB51 (RB51) bacterial challenge between contemporary Holsteins and Holsteins that have not been selected for milk production traits since the mid-1960s. Total RNA was extracted from peripheral blood mononuclear cells from four contemporary and four unselected lactating, primiparous cows following 24-h incubation with or without stimulation with RB51 bacteria. RNA was sequenced and reads analyzed using tools from galaxy.scinet.usda.gov. A total of 412 differentially expressed genes (false discovery rate p < 0.05, log fold change > |1|) were identified. The upregulated genes (genes with higher expression in contemporary than unselected cattle) were enriched for 19 terms/pathways, including alanine, aspartate, and glutamate metabolism, indicating a cellular stress response. Downregulated genes (genes with higher expression in unselected than contemporary cows) were enriched for 37 terms/pathways, representing diverse immune responses, including natural killer cell-mediated immunity, interferon-γ production, negative regulation of interleukin-10 production, and cytokine receptor activity indicating a broad immune response with an emphasis on immune defense. These results provide evidence that differences exist between the two genotypes in response to in vitro bacterial challenge. This suggests that contemporary cows, genetically selected for milk production, may have reduced immune function, including limitations in response to intracellular bacteria.


Assuntos
Brucella abortus , Leucócitos Mononucleares , Feminino , Bovinos/genética , Animais , Brucella abortus/genética , Lactação , Genótipo , RNA , Imunidade
2.
J Dairy Sci ; 105(6): 5435-5448, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35465989

RESUMO

Selective breeding of US dairy cows since the mid-1960s has contributed to remarkable gains in milk yield per cow. This increased milk yield has been associated with an increase in health issues. Since 1964, the University of Minnesota has selectively bred a Holstein herd to maintain genetically static, unselected Holsteins (UH). Comparison of these UH cows with contemporary Holsteins (CH) has demonstrated that the UH cows not only produce less milk but also have fewer health concerns than their CH herdmates. The objective of this study was to determine the effects of Holstein genotype on innate immune response in an experimental intramammary Escherichia coli challenge model. Primiparous UH (n = 5) and CH (n = 7) cows received 430 cfu of E. coli strain P4 in 1 quarter. Blood and affected quarter milk samples were collected at 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 7, 9, and 11 d relative to E. coli infusion. Rectal temperatures were recorded at each milking through d 4 of the experiment. Milk bacterial counts, somatic cell count and BSA concentrations, complete blood cell counts, rectal temperature, and serum and milk whey cytokine (IL-1ß and IL-6) concentrations were used as metrics to determine infection severity. Longitudinal (repeated) data were analyzed using general linear models with PROC MIXED with day of study as the repeated effect. Whole blood transcriptomes were generated by RNA sequencing. Transcripts with a false discovery rate of P < 0.05 and a delta log2 expression value greater than 0.7 or less than -0.7 were used for functional enrichment analysis. Bacterial counts were consistently greater in milk from CH than UH cows from d 0.25 through d 2.5. Milk somatic cell count increased within 6 h (d 0.25) after E. coli administration in CH and UH cows but did not differ between genotypes after d 1. Rectal body temperature peaked at d 1 in CH and UH cows but was greater in CH cows. Milk BSA, IL-1ß, and IL-6 concentrations were greater in CH than UH cows after E. coli administration. Blood lymphocyte and neutrophil counts were decreased at 0.5 and 1 d in CH but not in UH cows. The number of differentially expressed transcripts at each of the postinfusion sampling times was consistently greater (4- to 90-fold) in CH than in UH cows. A key difference between the immune reaction of the 2 genotypes was that the immune response to E. coli was largely contained within the mammary gland of the UH cows but became more systemic in the CH cows. These data demonstrate that UH cows exerted more effective control of E. coli infused into the mammary gland and thus support the hypothesis that selection practices since the mid-1960s have resulted in CH cows with an immune system that is less effective in fighting intramammary infections. Identification of genetic factors associated with enhanced immune functions that differ between the UH and CH cows could contribute to efforts to reintroduce or enhance beneficial components that have been lost or reduced in the CH cows since the mid-1960s.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Mastite Bovina , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Escherichia coli , Infecções por Escherichia coli/veterinária , Feminino , Genótipo , Imunidade Inata/genética , Interleucina-6/metabolismo , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/microbiologia , Leite/metabolismo
3.
BMC Vet Res ; 16(1): 336, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933523

RESUMO

BACKGROUND: Mastitis is the most common health concern plaguing the modern dairy cow and costs dairy producers estimates of two billion dollars annually. Staphylococcus aureus infections are prevalent, displaying varied disease presentation and markedly low cure rates. Neutrophils are considered the first line of defense against mastitis causing bacteria and are frequently targeted in the development of treatment and prevention technologies. We describe a case of naturally occurring, chronic mastitis in a Holstein cow (1428), caused by a novel strain of S. aureus that was not able to be cleared by antibiotic treatment. CASE PRESENTATION: The infection was identified in a single quarter, 2 months into the cow's first lactation. The infection persisted for the following 20 months, including through dry off, and a second calving and lactation. This case of mastitis was associated with a consistently high somatic cell count, however presented with no other clinical signs. This cow was unsuccessfully treated with antibiotics commonly used to treat mastitis, consisting of two rounds of treatment during lactation and an additional round at the beginning of dry off. The chronic infection was also unchanged through an experimental mid-lactation treatment with pegylated granulocyte-colony stimulating factor (PEG-gCSF) and an additional periparturient treatment with PEG-gCSF. We isolated milk neutrophils from 1428 and compared them to two cows challenged with experimental S. aureus, strain Newbould 305. Neutrophils from 1428's milk had higher surface expression of myeloperoxidase compared to experimental Newbould challenged animals, as well as increased presence of Neutrophil Extracellular Traps. This suggests a heightened activation state of neutrophils sourced from 1428's naturally occurring infection. Upon postmortem examination, the affected quarter revealed multifocal abscesses separated by fibrous connective tissues. Abscesses were most common in the gland cistern and collecting duct region. Microscopically, the inflammatory reaction was pyogranulomatous to granulomatous and consistent with botryomycosis. Colonies of Gram-positive cocci were found within the eosinophilic matrix of the Splendore-Hoeppli reaction within granulomas and intracellularly within the acinar epithelium. CONCLUSIONS: Collectively, we describe a unique case of chronic mastitis, the characterization of which provides valuable insight into the mechanics of S. aureus treatment resistance and immune escape.


Assuntos
Mastite Bovina/microbiologia , Neutrófilos/enzimologia , Infecções Estafilocócicas/veterinária , Abscesso/microbiologia , Abscesso/veterinária , Animais , Antibacterianos/uso terapêutico , Bovinos , Doença Crônica/veterinária , Feminino , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Mastite Bovina/tratamento farmacológico , Leite/citologia , Peroxidase/metabolismo , Polietilenoglicóis/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
4.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061709

RESUMO

Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. It is most often transient in nature, causing an infection that lasts 2 to 3 days. However, E. coli has been shown to cause a persistent infection in a minority of cases. Mechanisms that allow for a persistent E. coli infection are not fully understood. The goal of this work was to determine differences between E. coli strains originally isolated from dairy cattle with transient and persistent mastitis. Using RNA sequencing, we show gene expression differences in nearly 200 genes when bacteria from the two clinical phenotypes are compared. We sequenced the genomes of the E. coli strains and report genes unique to the two phenotypes. Differences in the wca operon, which encodes colanic acid, were identified by DNA as well as RNA sequencing and differentiated the two phenotypes. Previous work demonstrated that E. coli strains that cause persistent infections were more motile than those that cause transient infections. Deletion of genes in the wca operon from a persistent-infection strain resulted in a reduction of motility as measured in swimming and swarming assays. Furthermore, colanic acid has been shown to protect bacteria from complement-mediated killing. We show that transient-infection E. coli strains were more sensitive to complement-mediated killing. The deletion of genes from the wca operon caused a persistent-infection E. coli strain to become sensitive to complement-mediated killing. This work identifies important differences between E. coli strains that cause persistent and transient mammary infections in dairy cattle.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Mastite Bovina/microbiologia , Polissacarídeos/genética , Animais , Bovinos , Proteínas de Escherichia coli/genética , Feminino , Perfilação da Expressão Gênica/métodos , Genes Bacterianos/genética , Genômica/métodos , Glândulas Mamárias Animais/microbiologia , Fenótipo , Virulência/genética
5.
J Dairy Sci ; 99(12): 10150-10160, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27743666

RESUMO

The need for vitamin D supplementation of dairy cattle has been known for the better part of the last century and is well appreciated by dairy producers and nutritionists. Whether current recommendations and practices for supplemental vitamin D are meeting the needs of dairy cattle, however, is not well known. The vitamin D status of animals is reliably indicated by the concentration of the 25-hydroxyvitamin D [25(OH)D] metabolite in serum or plasma, with a concentration of 30ng/mL proposed as a lower threshold for sufficiency. The objective of this study was to determine the typical serum 25(OH)D concentrations of dairy cattle across various dairy operations. The serum 25(OH)D concentration of 702 samples collected from cows across various stages of lactation, housing systems, and locations in the United States was 68±22ng/mL (mean ± standard deviation), with the majority of samples between 40 and 100ng/mL. Most of the 12 herds surveyed supplemented cows with 30,000 to 50,000 IU of vitamin D3/d, and average serum 25(OH)D of cows at 100 to 300 DIM in each of those herds was near or above 70ng/mL regardless of season or housing. In contrast, average serum 25(OH)D of a herd supplementing with 20,000 IU/d was 42±15ng/mL, with 22% below 30ng/mL. Cows in early lactation (0 to 30d in milk) also had lower serum 25(OH)D than did mid- to late-lactation cows (57±17 vs. 71±20ng/mL, respectively). Serum 25(OH)D of yearling heifers receiving 11,000 to 12,000 IU of vitamin D3/d was near that of cows at 76±15ng/mL. Serum 25(OH)D concentrations of calves, on the other hand, was 15±11ng/mL at birth and remained near or below 15ng/mL through 1mo of age if they were fed pasteurized waste milk with little to no summer sun exposure. In contrast, serum 25(OH)D of calves fed milk replacer containing 6,600 and 11,000 IU of vitamin D2/kg of dry matter were 59±8 and 98±33ng/mL, respectively, at 1mo of age. Experimental data from calves similarly indicated that serum 25(OH)D achieved at approximately 1mo of age would increase 6 to 7ng/mL for every 1,000 IU of vitamin D3/kg of dry matter of milk replacer. In conclusion, vitamin D status of dairy cattle supplemented with vitamin D3 according to typical practices, about 1.5 to 2.5 times the National Research Council recommendation, is sufficient as defined by serum 25(OH)D concentrations. Newborn calves and calves fed milk without supplemental vitamin D3, however, are prone to deficiency.


Assuntos
Indústria de Laticínios , Vitamina D/sangue , Animais , Calcifediol , Bovinos , Feminino , Lactação , Leite , Vitaminas
6.
BMC Genomics ; 16: 806, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26475455

RESUMO

BACKGROUND: Milk exosomes are a rich source of microRNAs (miRNAs) that are protected from degradation. Ingestion of milk and subsequent absorption of miRNAs into recipient cells by endocytosis may play a role in the regulation of neonatal innate and adaptive immunity. In contrast, the miRNA content of milk exosomes may also be indicative of a lactating animal's health; whereby, the presence or absence of specific miRNAs could serve as biomarkers for early detection of bacterial infection that can lead to mastitis. In the present study, we therefore analyzed and compared miRNA expression profiles of milk exosomes from four Holstein cows obtained during mid-lactation prior to and after infection (48 h) of the mammary gland with Staphylococcus aureus. METHODS: Milk exosomes, purified from control and S. aureus infected cows, were extracted for RNA. Following preparation indexed libraries from both groups the samples were subjected to next generation sequencing. RESULTS: Next generation sequencing of eight, unpooled small RNA libraries derived from milk exosomes produced about 60.5 million high-quality, bovine-specific sequence reads for comparison of miRNA expression between treatments. Sequence identity analysis showed the miRNAs make up about 13 % of the average RNA content of these exosomes. Although 417 known bovine miRNAs were identified, miRNAs represented the least diverse class of RNA accounting for only 1 % of all unique sequences. The 20 most prevalent unique sequences within this class accounted for about 90 % of the total miRNA-associated reads across samples. Non-annotated, unique reads provided evidence for another 303 previously unknown bovine miRNAs. Expression analyses found 14 known bovine microRNAs significantly differed in frequency between exosomes from infected and control animals. CONCLUSIONS: Our survey of miRNA expression from uninfected milk exosomes and those produced in response to infection provides new and comprehensive information supporting a role for delivery into milk of specific miRNAs involved in immune response. In particular, bta-miR-142-5p, and -223 are potential biomarkers for early detection of bacterial infection of the mammary gland. Additionally, 22 mammary-expressed genes involved in regulation of host immune processes and response to inflammation were identified as potential binding targets of the differentially expressed miRNAs.


Assuntos
Exossomos/genética , MicroRNAs/biossíntese , Infecções Estafilocócicas/genética , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/isolamento & purificação , Leite/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/patogenicidade
7.
Biochem Biophys Res Commun ; 445(2): 417-21, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24530912

RESUMO

Plasma membrane Ca(2+)-ATPase 2 (PMCA2) knockout mice showed that ~60% of calcium in milk is transported across the mammary cells apical membrane by PMCA2. The remaining milk calcium is thought to arrive via the secretory pathway through the actions of secretory pathway Ca(2+)-ATPase's 1 and/or 2 (SPCA1 and 2). However, another secretory pathway calcium transporter was recently described. The question becomes whether this Golgi Ca(2+)/H(+) antiporter (TMEM165) is expressed sufficiently in the Golgi of lactating mammary tissue to be a relevant contributor to secretory pathway mammary calcium transport. TMEM165 shows marked expression on day one of lactation when compared to timepoints prepartum. At peak lactation TMEM165 expression was 25 times greater than that of early pregnancy. Forced cessation of lactation resulted in a rapid ~50% decline in TMEM165 expression at 24h of involution and TMEM165 expression declined 95% at 96 h involution. It is clear that the timing, magnitude of TMEM165 expression and its Golgi location supports a role for this Golgi Ca2(+)/H(+) antiporter as a contributor to mammary Golgi calcium transport needs, in addition to the better-characterized roles of SPCA1&2.


Assuntos
Antiporters/análise , Antiporters/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/análise , Proteínas de Transporte de Cátions/metabolismo , Lactação/fisiologia , Glândulas Mamárias Animais/fisiologia , Animais , Western Blotting , ATPases Transportadoras de Cálcio/análise , Feminino , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Glândulas Mamárias Animais/ultraestrutura , Camundongos , Microscopia Confocal , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Gravidez , Via Secretória
8.
BMC Microbiol ; 14: 48, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24559513

RESUMO

BACKGROUND: To obtain insights into Escherichia coli O157:H7 (O157) survival mechanisms in the bovine rumen, we defined the growth characteristics and proteome of O157 cultured in rumen fluid (RF; pH 6.0-7.2 and low volatile fatty acid content) obtained from rumen-fistulated cattle fed low protein content "maintenance diet" under diverse in vitro conditions. RESULTS: Bottom-up proteomics (LC-MS/MS) of whole cell-lysates of O157 cultured under anaerobic conditions in filter-sterilized RF (fRF; devoid of normal ruminal microbiota) and nutrient-depleted and filtered RF (dRF) resulted in an anaerobic O157 fRF-and dRF-proteome comprising 35 proteins functionally associated with cell structure, motility, transport, metabolism and regulation, but interestingly, not with O157 virulence. Shotgun proteomics-based analysis using isobaric tags for relative and absolute quantitation used to further study differential protein expression in unfiltered RF (uRF; RF containing normal rumen microbial flora) complemented these results. CONCLUSIONS: Our results indicate that in the rumen, the first anatomical compartment encountered by this human pathogen within the cattle gastrointestinal tract (GIT), O157 initiates a program of specific gene expression that enables it to adapt to the in vivo environment, and successfully transit to its colonization sites in the bovine GIT. Further experiments in vitro using uRF from animals fed different diets and with additional O157 strains, and in vivo using rumen-fistulated cattle will provide a comprehensive understanding of the adaptive mechanisms involved, and help direct evolution of novel modalities for blocking O157 infection of cattle.


Assuntos
Líquidos Corporais/microbiologia , Escherichia coli O157/química , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/análise , Proteoma/análise , Rúmen/microbiologia , Estresse Fisiológico , Adaptação Fisiológica , Animais , Bovinos
9.
Microbiol Resour Announc ; 13(2): e0117323, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38289052

RESUMO

Pseudomonas aeruginosa is considered an environmental pathogen, and it can cause acute and chronic mastitis in dairy cows. Here, we report the draft genome sequence of a multidrug-resistant P. aeruginosa strain (2011C-S1) isolated from a Holstein cow showing signs of chronic mastitis that was nonresponsive to intramammary antibiotic treatment.

10.
J Proteomics ; 295: 105106, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38320623

RESUMO

Leptospirosis is a global zoonotic disease affecting humans, domestic, and wild animals. Leptospira are typically shed in the urine of reservoir hosts which persist in suitable environments where incidental host transmission occurs after direct contact with infected urine or contaminated environments. Interestingly, serologically identical L. borgpetersenii serovar Hardjo strains JB197 and HB203 show divergent disease severity in the hamster model; JB197 causes severe acute infection while HB203 causes persistent chronic infection. Historically, serovar Hardjo was limited to culture at 29 °C, but utilization of HAN media allows propagation from host tissues at 37 °C. Here, the proteome of strains JB197 and HB203 were characterized after culture from experimentally challenged hamsters at 29 °C and 37 °C. Comparative analyses of JB197 and HB203 samples cultured at 29 °C yielded 425 significantly differentially expressed (DE) proteins, while strains at 37 °C yielded 613 DE proteins including prominent outer membrane proteins and known virulence factors. In agreement, membrane protein GO terms were identified by STRING network analyses along with numerous metabolic KEGG pathways consistent with condition differences. Within strain, JB197 cultured at 29 °C vs 37 °C identified 529 DE proteins, while HB203 identified 524 DE proteins. Investigating differential protein profiles provide insights into strain specific behaviors with implications for better understanding host-pathogen interactions, disease transmission, and response to environmental conditions which can contribute to vaccine development, diagnostic improvement, and ultimately leptospirosis control. SIGNIFICANCE: Leptospirosis is a devastating zoonotic disease affecting humans, wild and domestic animals around the globe. Different species and serovars of Leptospira can affect various animal host species differently; for instance, a serovar that is asymptomatic in the rat may cause severe disease in a dog or human. These differences in host response are not only found at the species and serovar level for Leptospira, but also at the strain level. A prime example comes from strains JB197 and HB203, both species L. borgpetersenii, both serovar Hardjo. Interestingly, JB197 causes a severe acute infection in the hamster while HB203 causes an asymptomatic chronic infection. Understanding these unique relationships between pathogen and host species is important, especially in the context of prevention technologies such as vaccine design, where the strain of Leptospira used as a bacterin might have different efficiencies in different hosts. In this study, proteomic profiles of strains JB197 and HB203 were analyzed, and results revealed diverse protein expression profiles of outer membrane proteins, as well as proteins functioning in motility and growth.


Assuntos
Doenças dos Bovinos , Leptospira , Leptospirose , Cricetinae , Animais , Humanos , Ratos , Cães , Bovinos , Sorogrupo , Infecção Persistente , Proteômica , Temperatura , Zoonoses , Proteínas de Membrana
11.
Immunology ; 139(2): 227-44, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23368631

RESUMO

γδ T cells respond to stimulation via toll-like receptors (TLR). Bovine γδ T cells express TLR3 and TLR7, receptors that are key for the recognition of viruses such as bovine respiratory syncytial virus (BRSV); however, responses of γδ T cells to stimulation via these receptors, and their role during viral infections, remains unclear. Here, we demonstrate that neonatal bovine γδ T cells exhibit robust chemokine and cytokine production in response to the TLR3 agonist, Poly(I:C), and the TLR7 agonist, Imiquimod. Importantly, we observe a similar phenotype in γδ T-cell subsets purified from calves infected with BRSV. Bovine γδ T cells are divided into subsets based upon their expression of WC1, and the response to TLR stimulation and viral infection differs between these subsets, with WC1.1(+) and WC1(neg) γδ T cells producing macrophage inflammatory protein-1α and granulocyte-macrophage colony-stimulating factor, and WC1.2(+) γδ T cells preferentially producing the regulatory cytokines interleukin-10 and transforming growth factor-ß. We further report that the active vitamin D metabolite 1,25-dihydroxyvitamin D3 does not alter γδ T-cell responses to TLR agonists or BRSV. To our knowledge, this is the first characterization of the γδ T-cell response during in vivo BRSV infection and the first suggestion that WC1.1(+) and WC1(neg) γδ T cells contribute to the recruitment of inflammatory populations during viral infection. Based on our results, we propose that circulating γδ T cells are poised to rapidly respond to viral infection and suggest an important role for γδ T cells in the innate immune response of the bovine neonate.


Assuntos
Quimiocinas/imunologia , Citocinas/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Subpopulações de Linfócitos T/imunologia , Receptores Toll-Like/imunologia , Aminoquinolinas/imunologia , Aminoquinolinas/farmacologia , Animais , Animais Recém-Nascidos , Bovinos , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Imiquimode , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Poli I-C/imunologia , Poli I-C/farmacologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Bovino/imunologia , Vírus Sincicial Respiratório Bovino/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/virologia , Fatores de Tempo , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/imunologia , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
12.
Microbiol Resour Announc ; 12(9): e0028923, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37581451

RESUMO

We report the draft genome sequence of a multidrug-resistant Pseudomonas aeruginosa strain isolated from a Holstein cow with chronic mastitis. The assembled genome contained 108 contigs with an N50 of 130,886 bp, 66.03% GC content, 6,214 protein-coding genes, 64 RNA genes, 88 pseudogenes, and six antibiotic-resistant genes.

13.
Front Immunol ; 14: 1040075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891302

RESUMO

Although Human Respiratory Syncytial Virus (HRSV) is a significant cause of severe respiratory disease with high morbidity and mortality in pediatric and elderly populations worldwide there is no licensed vaccine. Bovine Respiratory Syncytial Virus (BRSV) is a closely related orthopneumovirus with similar genome structure and high homology between structural and nonstructural proteins. Like HRSV in children, BRSV is highly prevalent in dairy and beef calves and known to be involved in the etiology of bovine respiratory disease, in addition to being considered an excellent model for HRSV. Commercial vaccines are currently available for BRSV, though improvements in efficacy are needed. The aims of this study were to identify CD4+ T cell epitopes present in the fusion glycoprotein of BRSV, an immunogenic surface glycoprotein that mediates membrane fusion and a major target of neutralizing antibodies. Overlapping peptides representing three regions of the BRSV F protein were used to stimulate autologous CD4+ T cells in ELISpot assays. T cell activation was observed only in cells from cattle with the DRB3*011:01 allele by peptides from AA249-296 of the BRSV F protein. Antigen presentation studies with C-terminal truncated peptides further defined the minimum peptide recognized by the DRB3*011:01 allele. Computationally predicted peptides presented by artificial antigen presenting cells further confirmed the amino acid sequence of a DRB3*011:01 restricted class II epitope on the BRSV F protein. These studies are the first to identify the minimum peptide length of a BoLA-DRB3 class II-restricted epitope in BRSV F protein.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Bovino , Vírus Sincicial Respiratório Humano , Animais , Bovinos , Humanos , Criança , Idoso , Linfócitos T , Epitopos de Linfócito T , Linfócitos T CD4-Positivos
14.
Vet Immunol Immunopathol ; 258: 110573, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36840993

RESUMO

Effects of Holstein genotype on interleukin-1ß response were assessed by ex-vivo stimulation of whole blood with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or sonicated, heat-killed Gram-negative or Gram-positive bacteria. Holstein genotypes were unselected Holsteins (UH, n = 14) not subjected to selection pressures since the mid-1960s and contemporary Holsteins (CH, n = 13). Milk yield of UH and CH cows differ by more than 4500 kg/lactation. Whole blood was mixed with 0.01 µg LPS, 10 µg LTA or 2.5 × 106 CFU of sonicated, heat-killed E. coli, K. pneumoniae, S. marcescens, S. aureus, S. dysgalactiae, or S. uberis per mL of blood and incubated (4 h, 37 °C). Plasma IL-1ß was quantified by ELISA and log10-transformed concentrations analyzed with a multivariate linear mixed effects model. Responses to bacteria were greater than responses to LPS or LTA. Responses to LPS, LTA and the Gram-negative stimulants were greater in UH than in CH cows while responses to the Gram-positive bacteria did not differ between Holstein genotypes. In both genotypes, strong correlations were detected among IL-1ß responses to the Gram-negative stimulants and to LTA. There were strong correlations among IL-1ß responses to the Gram-positive bacteria in CH cows but only between S. aureus and S. dysgalactiae in UH cows. The IL-1ß response to S. uberis was highly correlated with responses to all of the Gram-negative stimulants in CH cows but only with E. coli in the UH cows. The reduced immune response could make contemporary cows more susceptible to infection by Gram-negative bacteria. Results confirm selection practices since the mid-1960s have altered immune response in the Holstein, at least to Gram-negative bacteria, and validate the need for additional studies to further evaluate the impacts of these selection practices on immune function in contemporary Holsteins.


Assuntos
Escherichia coli , Lipopolissacarídeos , Feminino , Animais , Bovinos , Lipopolissacarídeos/farmacologia , Staphylococcus aureus , Interleucina-1beta/genética , Temperatura Alta , Ácidos Teicoicos/farmacologia , Bactérias Gram-Negativas , Genótipo
15.
BMC Res Notes ; 15(1): 236, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780123

RESUMO

OBJECTIVE: Bile and its individual components, mainly bile acids, are important for digestion and drive bacterial community dynamics in the upper gastrointestinal tract of chickens. However, specific responses to bile acids have been characterized in only a few commensal bacteria, and it is unclear how other members of the microbiota respond to biliary stress. Here, we used label-free LC-MS/MS to assess the proteomic response of a common inhabitant of the chicken small intestine, Turicibacter bilis MMM721, to 24 h of growth in anaerobic growth media supplemented with 0.1% whole chicken bile, 0.1% taurochenodeoxycholic acid (TCDCA), or 0.1% taurocholic acid (TCA). RESULTS: Seventy, 46, and 10 differentially expressed proteins were identified in Turicibacter bilis MMM721 cultured with supplements of chicken bile, TCDCA, and TCA, respectively, when compared to unsupplemented controls. Many differentially expressed proteins were predicted to be involved in ribosomal processes, post-translational modifications and chaperones, and modifications to the cell surface. Ultimately, the T. bilis MMM721 response to whole bile and bile acids is complex and may relate to adaptations for small intestine colonization, with numerous proteins from a variety of functional categories being impacted.


Assuntos
Ácidos e Sais Biliares , Bile , Animais , Bile/microbiologia , Ácidos e Sais Biliares/farmacologia , Galinhas , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem
16.
Front Vet Sci ; 9: 887560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928115

RESUMO

Bovine leukemia virus (BLV) infection in cattle is omnipresent, which causes significantly economical losses worldwide. The objective of this study was to determine microRNA (miRNA) and transcript profiles and to establish their relationship in response to exposure to the virus. Small noncoding and messenger RNA were extracted and sequenced from serum and white blood cells (WBCs) derived from seven BLV seropositive and seven seronegative cows. Transcriptomic profiles were generated by sequencing RNA libraries from WBC. Bta-miR-206 and bta-miR-133a-3p were differentially expressed in serum (P < 0.05). In WBC, bta-miR-335-3p, bta-miR-375, and bta-novel-miR76-3p were differentially expressed (P < 0.03). There were 64 differentially expressed transcripts (DETs). Gene ontology (GO) analysis of the DETs overexpressed in the seropositive group with GOs of response to stimulus and immune system process predicted that the DETs could potentially negatively regulate viral life cycle and viral entry or release from host cells. In addition, the DETs depleted in the seropositive group could play a role in the downregulation of antigen processing and presentation of endogenous peptide antigen via MHC class I. The differentially expressed miRNAs targeted 17 DETs, among which the expressions of bta-miR-133a-3p and bta-miR-335-3p were significantly negatively correlated with the expressions of ENSBTAT00000079143 and ENSBTAT00000066733, respectively. Under high prediction criteria, 90 targets of the differentially expressed miRNAs were all non-DETs. The most enriched biological process GO term of the targets was the RNA-dependent DNA biosynthetic process, which could be associated with virus replication. These results suggested that the differentially expressed miRNAs fine-tune most of the target genes in responding to BLV exposure. In addition, Bta-miR-206 interacted with BLV regulatory genes rex and tax by targeting their coding regions. A further study of the miRNAs and the genes may reveal the molecular mechanisms of BLV infection and uncover possible ways to prevent the infection.

17.
Data Brief ; 45: 108713, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36425979

RESUMO

Leptospirosis is a global zoonotic bacterial disease which is a threat for humans and most mammals. Bacterin vaccines for leptospirosis are available however they are severely limited in cross protection between serogroups. Leptospira typically colonize the kidneys of reservoir hosts where they are subsequently shed in the urine and persist in the environment and can thus be indirectly or directly transmitted to incidental hosts. Leptospira borgpetersenii serovar Hardjo is the primary cause of leptospirosis in cattle which can result in abortion, unhealthy calves, and rebreed problems. This dataset comprises proteomic profiles of four strains of L. borgpetersenii serovar Hardjo propagated at the routinely utilized culture temperature of 29 °C, and a newly achieved culture temperature of 37 °C, which more closely emulates the temperature of an infected host. The strains analyzed include JB197 (established strain that causes Hardjo atypical acute disease in the hamster model of leptospirosis), HB203 (established strain, causes typical chronic disease in hamsters), as well as TC129 and TC273 (recently isolated strains from the central United States). Differential expression profiles were detected not only between strains but also within strains between culture temperatures. Mass spectrometry data are available via ProteomeXchange with identifier PXD032831.

18.
J Proteomics ; 262: 104602, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35526804

RESUMO

Leptospirosis is a global zoonotic disease affecting humans and livestock species. Bacterin vaccines lack cross protection between serogroups, and include multiple serovars propagated at 29 °C. Recent work demonstrated substantial variation in the transcriptome of identical species and serovars of Leptospira. Here, substantial differences in protein abundance profiles were identified in Leptospira borgpetersenii serovar Hardjo; strain HB203, which was isolated in the 1980s, compared to newer strains TC129 and TC273 isolated in 2016, and whether they were propagated at the routine temperature of 29 °C, compared to 37 °C which more closely emulates host infection. While 388 and 385 significantly differentially expressed (DE) proteins (FDR of 0.01) were identified in HB203 versus TC129, and HB203 versus TC273 when propagated at 29 °C respectively, only 66 and 4 DE proteins were identified in HB203 versus TC129, and HB203 versus TC273 when propagated at 37 °C respectively. Within each strain comparing temperatures, HB203 had 524 significantly DE proteins, TC129 had 347 DE proteins, and TC273 had 569 DE proteins. Data are available via ProteomeXchange with identifier PXD032831. Results highlight significant differential protein expression among identical serovars of L. borgpetersenii suggesting that bacterin vaccine design can benefit from consideration of strains employed and effects of temperature on growth. SIGNIFICANCE: Leptospirosis is a zoonotic disease caused by spirochete bacteria of the genus Leptospira. While leptospirosis affects over one million people per year, symptoms range vastly in severity from completely asymptomatic, to flu-like, to multi-organ failure and death in severe cases. Incidental hosts become infected after encountering pathogens directly from contact with another host, including domestic or wildlife animals, or indirectly from contaminated environments. Though animal vaccines exist, they lack cross protection across serogroups, and instead rely on inclusion of multiple carefully selected serovars from laboratory strains prepared at ~29 °C. Recent interest in gene expression at the Leptospira strain level, along with a newly achieved culture temperature of 37 °C (which more closely resembles host body temperature), led us to investigate the proteomic profiles of an older, established challenge strain HB203 in comparison to TC129 and TC273, two strains isolated in 2016 from abattoir cattle in the central United States. Herein, we identify substantial proteomic differences not only between strains of the same species and serovar, but notably between growth temperatures, collectively suggesting that bacterin vaccine composition may benefit from investigating strain selection and the temperature employed for growth of the bacteria used in bacterin preparation.


Assuntos
Doenças dos Bovinos , Leptospira , Leptospirose , Animais , Vacinas Bacterianas , Bovinos , Humanos , Proteoma/genética , Proteômica , Sorogrupo , Temperatura , Zoonoses
19.
Vet Immunol Immunopathol ; 251: 110463, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35878562

RESUMO

Effects of Holstein genotype on innate immune response were assessed with ex-vivo lipopolysaccharide (LPS) and lipoteichoic acid (LTA) stimulation of whole blood from unselected (UH, n = 10) and contemporary (CH, n = 11) Holsteins that differ in production by more than 4,500 kg/lactation. Blood was collected at -14, 7, 28, and 49 days in milk (DIM), mixed with a pathogen-associated molecular pattern (PAMP) molecule (0.01 or 1.0 µg LPS or 10 or 100 µg LTA per mL blood) and incubated (4 h, 37 °C). Plasma cytokines were quantified by ELISA, log10-transformed and analyzed by repeated measures with DIM as the repeated effect. Cytokine responses increased with PAMP dose and decreased as DIM increased. There was a genotype by LPS dose interaction for IL-1ß as response to the low dose was greater in UH but did not differ between genotypes for the high dose. The IL-1ß response was greater while the IL-6 response to LTA tended to be greater in UH than in CH cows. The more negative energy balance of CH cows did not impact genotype difference in cytokine responses. Results indicate selection since the mid-1960s has decreased ex-vivo, whole blood cytokine response of CH cows to LPS and to LTA.


Assuntos
Citocinas , Lipopolissacarídeos , Animais , Bovinos , Citocinas/genética , Feminino , Genótipo , Lipopolissacarídeos/farmacologia , Moléculas com Motivos Associados a Patógenos , Ácidos Teicoicos/farmacologia
20.
Front Microbiol ; 12: 799012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185824

RESUMO

Leptospirosis is a worldwide zoonosis caused by pathogenic species of the genus Leptospira. The recent application of CRISPR interference (CRISPRi) to Leptospira facilitates targeted gene silencing and provides a new tool to investigate pathogenic mechanisms of leptospirosis. CRISPRi relies on the expression of a catalytically "dead" Cas9 (dCas9) and a single-guide RNA (sgRNA). Previously, our group generated a LipL32 and a double LigA/LigB (LigAB) mutant, which, in the current study, are characterized by whole-cell proteomics in comparison with control leptospires harboring plasmid expressing dCas9 alone. Comparison of control and LigAB mutant leptospires identified 46 significantly differentially expressed (DE) proteins, including 27 proteins that were less abundant and 19 proteins that were more abundant in the LigAB mutant compared with the control. Comparison of the control and LipL32 mutant leptospires identified 243 DE proteins, of which 84 proteins were more abundant and 159 were less abundant in the LipL32 mutant strain. Significantly increased amounts of known virulence impactors and surface membrane receptors, including LipL45, LipL31, LigB, and LipL41, were identified. The virulence of LipL32 and LigAB mutants were evaluated in the hamster model of leptospirosis; the LigAB mutant was unable to cause acute disease although mutant leptospires could still be recovered from target organs, albeit at a significantly lower bacterial burden (<850 and <16-fold in liver and kidney, respectively, in comparison with control), indicating attenuation of virulence and a shift to chronic bacterial persistence. Notably, the LipL32 mutant displayed augmented virulence as evidenced by early onset of clinical symptoms and increased numbers of circulating foamy macrophages. Validation of LipL32 and LigAB mutants recovered from liver and kidney in the presence or absence of antibiotic selection revealed high plasmid stability and, by extension, gene silencing in vivo. Collectively, this work emphasizes the advantages and feasibility of using CRISPRi technology to evaluate and characterize virulence factors of leptospires and their respective host-pathogen interactions in animal models of leptospirosis. Importantly, it also provides insight into the requirements of LigA and LigB for acute disease and explores the impact of silencing expression of lipL32, which resulted in substantial changes in amounts of outer membrane proteins.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa