RESUMO
Nitrogen is an essential macronutrient for plant growth and basic metabolic processes. The application of nitrogen-containing fertilizer increases yield, which has been a substantial factor in the green revolution1. Ecologically, however, excessive application of fertilizer has disastrous effects such as eutrophication2. A better understanding of how plants regulate nitrogen metabolism is critical to increase plant yield and reduce fertilizer overuse. Here we present a transcriptional regulatory network and twenty-one transcription factors that regulate the architecture of root and shoot systems in response to changes in nitrogen availability. Genetic perturbation of a subset of these transcription factors revealed coordinate transcriptional regulation of enzymes involved in nitrogen metabolism. Transcriptional regulators in the network are transcriptionally modified by feedback via genetic perturbation of nitrogen metabolism. The network, genes and gene-regulatory modules identified here will prove critical to increasing agricultural productivity.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Transcrição Gênica , Agricultura/métodos , Agricultura/tendências , Alelos , Arabidopsis/metabolismo , Retroalimentação Fisiológica , Genótipo , Mutação , Nitratos/metabolismo , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures.
Assuntos
Inflorescência/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Zea mays/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Inflorescência/metabolismo , Meristema/genética , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismoRESUMO
Transcriptional control is an important determinant of plant development, and distinct modules of coordinated genes characterize the maize developmental transcriptome. Upstream regulatory sequences are often the primary factors that control gene expression pattern and abundance. Here, we identify 244 regulatory motifs that are significantly enriched within 24 gene expression modules previously constructed from transcript abundances of 34,876 Zea mays (maize) gene models from embryogenesis to senescence. Within modules, we identify motifs that have not been characterized. In addition, we identify motifs similar to experimentally verified motifs, and the functions of these motifs overlap with predicted module functions. This work demonstrates the power of transcript-level coexpression modules to identify both variants of known regulatory motifs and novel motifs that control a species' developmental transcriptome.
Assuntos
Regiões 5' não Traduzidas , Redes Reguladoras de Genes , Motivos de Nucleotídeos , Desenvolvimento Vegetal/genética , Zea mays/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Matrizes de Pontuação de Posição Específica , Zea mays/crescimento & desenvolvimentoRESUMO
BACKGROUND: The discovery of genetic networks and cis-acting DNA motifs underlying their regulation is a major objective of transcriptome studies. The recent release of the maize genome (Zea mays L.) has facilitated in silico searches for regulatory motifs. Several algorithms exist to predict cis-acting elements, but none have been adapted for maize. RESULTS: A benchmark data set was used to evaluate the accuracy of three motif discovery programs: BioProspector, Weeder and MEME. Analysis showed that each motif discovery tool had limited accuracy and appeared to retrieve a distinct set of motifs. Therefore, using the benchmark, statistical filters were optimized to reduce the false discovery ratio, and then remaining motifs from all programs were combined to improve motif prediction. These principles were integrated into a user-friendly pipeline for motif discovery in maize called Promzea, available at http://www.promzea.org and on the Discovery Environment of the iPlant Collaborative website. Promzea was subsequently expanded to include rice and Arabidopsis. Within Promzea, a user enters cDNA sequences or gene IDs; corresponding upstream sequences are retrieved from the maize genome. Predicted motifs are filtered, combined and ranked. Promzea searches the chosen plant genome for genes containing each candidate motif, providing the user with the gene list and corresponding gene annotations. Promzea was validated in silico using a benchmark data set: the Promzea pipeline showed a 22% increase in nucleotide sensitivity compared to the best standalone program tool, Weeder, with equivalent nucleotide specificity. Promzea was also validated by its ability to retrieve the experimentally defined binding sites of transcription factors that regulate the maize anthocyanin and phlobaphene biosynthetic pathways. Promzea predicted additional promoter motifs, and genome-wide motif searches by Promzea identified 127 non-anthocyanin/phlobaphene genes that each contained all five predicted promoter motifs in their promoters, perhaps uncovering a broader co-regulated gene network. Promzea was also tested against tissue-specific microarray data from maize. CONCLUSIONS: An online tool customized for promoter motif discovery in plants has been generated called Promzea. Promzea was validated in silico by its ability to retrieve benchmark motifs and experimentally defined motifs and was tested using tissue-specific microarray data. Promzea predicted broader networks of gene regulation associated with the historic anthocyanin and phlobaphene biosynthetic pathways. Promzea is a new bioinformatics tool for understanding transcriptional gene regulation in maize and has been expanded to include rice and Arabidopsis.
Assuntos
Antocianinas/biossíntese , Vias Biossintéticas , Biologia Computacional/métodos , Flavonoides/biossíntese , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Software , Zea mays/genética , Algoritmos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Sequência de Bases , Biologia Computacional/instrumentação , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismoRESUMO
Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.