Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20260, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985685

RESUMO

Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis. Training such deep learning models requires large and accurate datasets, with annotations for all training samples. However, in the medical imaging domain, annotated datasets for specific tasks are often small due to the high complexity of annotations, limited access, or the rarity of diseases. To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning. After pre-training, small annotated datasets are sufficient to fine-tune the models for a specific task. The most popular self-supervised pre-training approaches in medical imaging are based on contrastive learning. However, recent studies in natural image processing indicate a strong potential for masked autoencoder approaches. Our work compares state-of-the-art contrastive learning methods with the recently introduced masked autoencoder approach "SparK" for convolutional neural networks (CNNs) on medical images. Therefore, we pre-train on a large unannotated CT image dataset and fine-tune on several CT classification tasks. Due to the challenge of obtaining sufficient annotated training data in medical imaging, it is of particular interest to evaluate how the self-supervised pre-training methods perform when fine-tuning on small datasets. By experimenting with gradually reducing the training dataset size for fine-tuning, we find that the reduction has different effects depending on the type of pre-training chosen. The SparK pre-training method is more robust to the training dataset size than the contrastive methods. Based on our results, we propose the SparK pre-training for medical imaging tasks with only small annotated datasets.


Assuntos
Aprendizado Profundo , Humanos , Diagnóstico por Imagem , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Radiografia , Aprendizado de Máquina Supervisionado
2.
Cancers (Basel) ; 15(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067334

RESUMO

Accurate prediction of lymph node metastasis (LNM) in patients with testicular cancer is highly relevant for treatment decision-making and prognostic evaluation. Our study aimed to develop and validate clinical radiomics models for individual preoperative prediction of LNM in patients with testicular cancer. We enrolled 91 patients with clinicopathologically confirmed early-stage testicular cancer, with disease confined to the testes. We included five significant clinical risk factors (age, preoperative serum tumour markers AFP and B-HCG, histotype and BMI) to build the clinical model. After segmenting 273 retroperitoneal lymph nodes, we then combined the clinical risk factors and lymph node radiomics features to establish combined predictive models using Random Forest (RF), Light Gradient Boosting Machine (LGBM), Support Vector Machine Classifier (SVC), and K-Nearest Neighbours (KNN). Model performance was assessed by the area under the receiver operating characteristic (ROC) curve (AUC). Finally, the decision curve analysis (DCA) was used to evaluate the clinical usefulness. The Random Forest combined clinical lymph node radiomics model with the highest AUC of 0.95 (±0.03 SD; 95% CI) was considered the candidate model with decision curve analysis, demonstrating its usefulness for preoperative prediction in the clinical setting. Our study has identified reliable and predictive machine learning techniques for predicting lymph node metastasis in early-stage testicular cancer. Identifying the most effective machine learning approaches for predictive analysis based on radiomics integrating clinical risk factors can expand the applicability of radiomics in precision oncology and cancer treatment.

3.
Rofo ; 194(10): 1088-1099, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545103

RESUMO

Osteoporosis is a highly prevalent systemic skeletal disease that is characterized by low bone mass and microarchitectural bone deterioration. It predisposes to fragility fractures that can occur at various sites of the skeleton, but vertebral fractures (VFs) have been shown to be particularly common. Prevention strategies and timely intervention depend on reliable diagnosis and prediction of the individual fracture risk, and dual-energy X-ray absorptiometry (DXA) has been the reference standard for decades. Yet, DXA has its inherent limitations, and other techniques have shown potential as viable add-on or even stand-alone options. Specifically, three-dimensional (3 D) imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), are playing an increasing role. For CT, recent advances in medical image analysis now allow automatic vertebral segmentation and value extraction from single vertebral bodies using a deep-learning-based architecture that can be implemented in clinical practice. Regarding MRI, a variety of methods have been developed over recent years, including magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) that enable the extraction of a vertebral body's proton density fat fraction (PDFF) as a promising surrogate biomarker of bone health. Yet, imaging data from CT or MRI may be more efficiently used when combined with advanced analysis techniques such as texture analysis (TA; to provide spatially resolved assessments of vertebral body composition) or finite element analysis (FEA; to provide estimates of bone strength) to further improve fracture prediction. However, distinct and experimentally validated diagnostic criteria for osteoporosis based on CT- and MRI-derived measures have not yet been achieved, limiting broad transfer to clinical practice for these novel approaches. KEY POINTS:: · DXA is the reference standard for diagnosis and fracture prediction in osteoporosis, but it has important limitations.. · CT- and MRI-based methods are increasingly used as (opportunistic) approaches.. · For CT, particularly deep-learning-based automatic vertebral segmentation and value extraction seem promising.. · For MRI, multiple techniques including spectroscopy and chemical shift imaging are available to extract fat fractions.. · Texture and finite element analyses can provide additional measures for vertebral body composition and bone strength.. CITATION FORMAT: · Sollmann N, Kirschke JS, Kronthaler S et al. Imaging of the Osteoporotic Spine - Quantitative Approaches in Diagnostics and for the Prediction of the Individual Fracture Risk. Fortschr Röntgenstr 2022; 194: 1088 - 1099.


Assuntos
Osteoporose , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Absorciometria de Fóton/métodos , Densidade Óssea , Humanos , Vértebras Lombares , Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/diagnóstico por imagem , Prótons , Fraturas da Coluna Vertebral/diagnóstico por imagem , Água
4.
Cancers (Basel) ; 14(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454914

RESUMO

Mantle cell lymphoma (MCL) is a rare lymphoid malignancy with a poor prognosis characterised by frequent relapse and short durations of treatment response. Most patients present with aggressive disease, but there exist indolent subtypes without the need for immediate intervention. The very heterogeneous behaviour of MCL is genetically characterised by the translocation t(11;14)(q13;q32), leading to Cyclin D1 overexpression with distinct clinical and biological characteristics and outcomes. There is still an unfulfilled need for precise MCL prognostication in real-time. Machine learning and deep learning neural networks are rapidly advancing technologies with promising results in numerous fields of application. This study develops and compares the performance of deep learning (DL) algorithms and radiomics-based machine learning (ML) models to predict MCL relapse on baseline CT scans. Five classification algorithms were used, including three deep learning models (3D SEResNet50, 3D DenseNet, and an optimised 3D CNN) and two machine learning models based on K-nearest Neighbor (KNN) and Random Forest (RF). The best performing method, our optimised 3D CNN, predicted MCL relapse with a 70% accuracy, better than the 3D SEResNet50 (62%) and the 3D DenseNet (59%). The second-best performing method was the KNN-based machine learning model (64%) after principal component analysis for improved accuracy. Our optimised CNN developed by ourselves correctly predicted MCL relapse in 70% of the patients on baseline CT imaging. Once prospectively tested in clinical trials with a larger sample size, our proposed 3D deep learning model could facilitate clinical management by precision imaging in MCL.

5.
Cancers (Basel) ; 14(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053554

RESUMO

The study's primary aim is to evaluate the predictive performance of CT-derived 3D radiomics for MCL risk stratification. The secondary objective is to search for radiomic features associated with sustained remission. Included were 70 patients: 31 MCL patients and 39 control subjects with normal axillary lymph nodes followed over five years. Radiomic analysis of all targets (n = 745) was performed and features selected using the Mann Whitney U test; the discriminative power of identifying "high-risk MCL" was evaluated by receiver operating characteristics (ROC). The four radiomic features, "Uniformity", "Entropy", "Skewness" and "Difference Entropy" showed predictive significance for relapse (p < 0.05)-in contrast to the routine size measurements, which showed no relevant difference. The best prognostication for relapse achieved the feature "Uniformity" (AUC-ROC-curve 0.87; optimal cut-off ≤0.0159 to predict relapse with 87% sensitivity, 65% specificity, 69% accuracy). Several radiomic features, including the parameter "Short Axis," were associated with sustained remission. CT-derived 3D radiomics improves the predictive estimation of MCL patients; in combination with the ability to identify potential radiomic features that are characteristic for sustained remission, it may assist physicians in the clinical management of MCL.

6.
Rofo ; 191(4): 323-332, 2019 Apr.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-30562830

RESUMO

OBJECTIVE: MRI is the most important and sensitive imaging modality in the differentiation of unclear soft tissue tumors. A systematic approach helps to narrow down the large number of possible differential diagnoses. METHOD: Our review systematically compares MRI characteristics of the major soft-tissue masses and aims to gain access to these often difficult tumor entities. RESULTS AND CONCLUSION: MRI, as the most important modality in the imaging of soft tissue tumors, allows a more detailed classification of the tumor entity and in many cases a differentiation between benign and malignant masses. KEY POINTS: · MRI is the method of choice for classifying unclear soft tissue tumors.. · A systematic approach may differentiate benign from unclear lesions.. · In cases of doubt, a biopsy should be performed to rule out malignancy.. CITATION FORMAT: · Lisson CS, Lisson CG, Beer M et al. Radiological Diagnosis of Soft Tissue Tumors in Adults: MRI Imaging of Selected Entities Delineating Benign and Malignant Tumors. Fortschr Röntgenstr 2019; 191: 323 - 332.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias de Tecidos Moles/diagnóstico por imagem , Diagnóstico Diferencial , Humanos , Sensibilidade e Especificidade , Neoplasias de Tecidos Moles/classificação , Neoplasias de Tecidos Moles/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa