Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834690

RESUMO

Notable characteristics of the skeleton are its responsiveness to physical stimuli and its ability to remodel secondary to changing biophysical environments and thereby fulfill its physiological roles of stability and movement. Bone and cartilage cells have many mechanisms to sense physical cues and activate a variety of genes to synthesize structural molecules to remodel their extracellular matrix and soluble molecules for paracrine signaling. This review describes the response of a developmental model of endochondral bone formation which is translationally relevant to embryogenesis, growth, and repair to an externally applied pulsed electromagnetic field (PEMF). The use of a PEMF allows for the exploration of morphogenesis in the absence of distracting stimuli such as mechanical load and fluid flow. The response of the system is described in terms of the cell differentiation and extracellular matrix synthesis in chondrogenesis. Emphasis is placed upon dosimetry of the applied physical stimulus and some of the mechanisms of tissue response through a developmental process of maturation. PEMFs are used clinically for bone repair and have other potential clinical applications. These features of tissue response and signal dosimetry can be extrapolated to the design of clinically optimal stimulation.


Assuntos
Campos Eletromagnéticos , Osteogênese , Osteogênese/fisiologia , Condrogênese/fisiologia , Osso e Ossos , Matriz Extracelular
2.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047734

RESUMO

Bone marrow edema (BME), also termed bone marrow lesions, is a syndrome characterized by bone pain and the appearance of high signal intensity on T2 fat-suppressed and short tau inversion recovery (STIR) MRI sequences. BME can be related to trauma or a variety of non-traumatic diseases, and current treatment modalities include non-steroidal anti-inflammatory drugs (NSAIDS), bisphosphonates, denosumab, extracorporeal shockwave therapy (ESWT), the vasoactive prostacyclin analogue iloprost, and surgical decompression. Spontaneous BME is a subset that has been observed with no apparent causative conditions. It is most likely caused by venous outflow obstruction and intraosseous hypertension. These are mechanistically related to impaired perfusion and ischemia in several models of BME and are related to bone remodeling. The association of perfusion abnormalities and bone pain provides the pathophysiological rationale for surgical decompression. We present a case of spontaneous BME and a second case of spontaneous migratory BME treated with surgical decompression and demonstrate resolution of pain and the high signal intensity on MRI. This report provides an integration of the clinical syndrome, MR imaging characteristics, circulatory pathophysiology, and treatment. It draws upon several studies to suggest that both the bone pain and the MRI characteristics are related to venous stasis, and when circulatory pathologies are relieved by decompression or fenestration, both the bone pain and the MRI signal abnormalities resolve.


Assuntos
Doenças Ósseas , Doenças da Medula Óssea , Dor Musculoesquelética , Humanos , Medula Óssea/patologia , Doenças da Medula Óssea/diagnóstico por imagem , Doenças da Medula Óssea/terapia , Edema/terapia , Edema/tratamento farmacológico , Descompressão Cirúrgica/métodos , Imageamento por Ressonância Magnética/métodos , Perfusão
3.
Orthop Res Rev ; 15: 39-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36987449

RESUMO

Familial exudative vitreoretinopathy (FEVR) is a genetic disorder whose presentation can include osteoporosis, multiple fractures, and incomplete retinal angiogenesis leading to retinal detachment and blindness if left untreated. Discussed herein are the cases of two pediatric siblings who presented to the orthopedic service with multiple fractures and, through interdisciplinary management, were diagnosed with FEVR and treated appropriately before permanent visual impairment. The skeletal manifestations of FEVR, which have not been explored in depth in prior literature, are described. One sibling presented to orthopedic services for evaluation of a closed distal radius fracture sustained while playing sports. A comprehensive history revealed he had suffered at least four appendicular fractures in his lifetime, and dual-energy x-ray absorptiometry (DEXA) scan revealed his bone density to be in the first percentile for his age. Concurrent evaluation of his younger sibling revealed a similar history of multiple fractures and low bone density. Referral to genetic services and ensuing whole-exome sequencing revealed a likely pathogenic variant in both siblings' LRP5 gene, the only known causative mutation for FEVR that leads to skeletal manifestations. While FEVR is well known in genetic and ophthalmologic settings, greater awareness of FEVR and other genetic disorders that predispose to fractures in pediatric populations is warranted in orthopedic settings. This will lead to reduced sequelae in pediatric patients with genetic disorders and improved interdisciplinary expertise. The story of these siblings illustrates that a high index of suspicion for genetic diseases is essential when treating children with osteoporosis and growth delays.

4.
Biomedicines ; 11(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37892999

RESUMO

Endogenous ochronosis, also known as alkaptonuria, is a rare disease known for its bluish-black discoloration of the skin, sclerae, and pinnae, as well as urine that turns black upon standing. Though rarely fatal, joint degradation is a common sequela, and many patients require multiple large joint arthroplasties throughout their lifetime. Though many aspects of the pathophysiological mechanisms of the disease have been described, questions remain, such as how the initiation of ochronotic pigmentation is prompted and the specific circumstances that make some tissues more resistant to pigmentation-related damage than others. In this report, we present the case of an 83-year-old female previously diagnosed with alkaptonuria including high-quality arthroscopic images displaying the fraying of articular cartilage. We also offer a summary of the latest literature on the pathophysiological mechanisms of the disease, including cellular-level changes observed in ochronotic chondrocytes, biochemical and mechanical alterations to the cartilaginous extracellular matrix, and patterns of pigmentation and joint degradation observed in humans and mice models. With these, we present an overview of the mechanisms of ochronotic chondropathy and joint degradation as the processes are currently understood. While alkaptonuria itself is rare, it has been termed a "fundamental disease," implying that its study and greater understanding have the potential to lead to insights in skeletal biology in general, as well as more common pathologies such as osteoarthritis and their potential treatment mechanisms.

5.
Genes (Basel) ; 14(10)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895195

RESUMO

The formation and maintenance of the gross structure and microarchitecture of the human skeleton require the concerted functioning of a plethora of morphogenic signaling processes. Through recent discoveries in the field of genetics, numerous genotypic variants have been implicated in pathologic skeletal phenotypes and disorders arising from the disturbance of one or more of these processes. For example, total loss-of-function variants of LRP5 were found to be the cause of osteoporosis-pseudoglioma syndrome (OPPG). LRP5 encodes for the low-density lipoprotein receptor-related protein 5, a co-receptor in the canonical WNT-ß-catenin signaling pathway and a crucial protein involved in the formation and maintenance of homeostasis of the human skeleton. Beyond OPPG, other partial loss-of-function variants of LRP5 have been found to be associated with other low bone mass phenotypes and disorders, while LRP5 gain-of-function variants have been implicated in high bone mass phenotypes. This review introduces the roles that LRP5 plays in skeletal morphogenesis and discusses some of the structural consequences that result from abnormalities in LRP5. A greater understanding of how the LRP5 receptor functions in bone and other body tissues could provide insights into a variety of pathologies and their potential treatments, from osteoporosis and a variety of skeletal abnormalities to congenital disorders that can lead to lifelong disabilities.


Assuntos
Osteogênese Imperfeita , Osteoporose , Humanos , Densidade Óssea/genética , Osteoporose/genética , Osteoporose/complicações , Osteogênese Imperfeita/genética , Osso e Ossos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
6.
R I Med J (2013) ; 105(8): 9-14, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36173903

RESUMO

The roles of a fracture liaison service (FLS) are extensive and include, but are not limited to: 1) providing a standardized framework for the evaluation and management of low-energy fractures, also known as fragility fractures; 2) improving patient outcomes through the recognition of fragility fractures as signal events requiring further diagnostic explanation; and 3) lowering direct and indirect healthcare expenditures. One of the central tenets of the FLS is its recognition of fragility fractures as warning signs of underlying pathology, often osteoporosis or other metabolic bone diseases. This understanding, combined with the application of a multidisciplinary management team specialized in diagnosing and treating such pathologies, allows for better short- and long-term management of patients and concordant improvement in outcomes. This article should be viewed as a thematic introduction to the FLS, with others in this volume each illustrating specific examples of how FLS paradigms facilitate the roles described herein.


Assuntos
Fraturas Ósseas , Gastos em Saúde , Humanos
8.
R I Med J (2013) ; 105(8): 7-8, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36173902
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa