Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Robot ; 10(5): 884-896, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37459134

RESUMO

Aquatic swimmers, whether natural or artificial, leverage their maneuverability and morphological adaptability to operate successfully in diverse, complex underwater environments. Maneuverability allows swimmers the agility to change speed and direction within a constrained operating space, while morphological adaptability allows their bodies to deform as they avoid obstacles and pass through narrow gaps. In this work, we design a soft, modular, nonbiomorphic swimming robot that emulates the maneuverability and adaptability of biological swimmers. This tethered swimming robot is actuated by a two degree-of-freedom (2-DOF) cable-driven mechanism that enables not only common maneuvers, such as undulatory surging and pitch/yaw rotations, but also a roll rotation maneuver that is steady and controllable. This simple 2-DOF system demonstrates full 3D swimming abilities in a space-constrained underwater test bed. The soft compliant body and passive foldable fins of the swimming robot lend to its morphological adaptability, allowing it to move through narrow gaps, channels, and tunnels and to avoid obstacles without the need for a low-level feedback control strategy. The passive adaptability and maneuvering capabilities of our swimming robot offer a new approach to achieving underwater navigation in complex real-world settings.

2.
Bioinspir Biomim ; 17(1)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34496355

RESUMO

Earthworms (Lumbricus terrestris) are characterized by soft, highly flexible and extensible bodies, and are capable of locomoting in most terrestrial environments. Previous studies of earthworm movement focused on the use of retrograde peristaltic gaits in which controlled contraction of longitudinal and circular muscles results in waves of shortening/thickening and thinning/lengthening of the hydrostatic skeleton. These waves can propel the animal across ground as well as into soil. However, worms benefit from axial body bends during locomotion. Such lateral bending and buckling dynamics can aid locomotor function via hooking/anchoring (to provide propulsion), modify travel orientation (to avoid obstacles and generate turns) and even generate snake-like undulatory locomotion in environments where peristaltic locomotion results in poor performance. To the best of our knowledge, lateral bending and buckling of an earthworm's body has not yet been systematically investigated. In this study, we observed that within confined environments, worms use lateral bending and buckling to anchor their body to the walls of their burrows and tip (anterior end) bending to search the environment. This locomotion strategy improved the performance of our soft-bodied robophysical model of the earthworm both in a confined (in an acrylic tube) and above-ground heterogeneous environment (rigid pegs), where present peristaltic robots are relatively limited in terradynamic capabilities. In summary, lateral bending and buckling facilitates the mobility of earthworm locomotion in diverse terrain and can play an important role in the creation of low cost soft robotic devices capable of traversing a variety of environments.


Assuntos
Oligoquetos , Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Marcha , Locomoção/fisiologia , Oligoquetos/fisiologia , Robótica/métodos
3.
ACS Appl Mater Interfaces ; 12(39): 43388-43397, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32791828

RESUMO

Sensors that can detect external stimuli and perceive the surrounding areas could offer an ability for soft biomimetic robots to use the sensory feedback for closed-loop control of locomotion. Although various types of biomimetic robots have been developed, few systems have included integrated stretchable sensors and interconnectors with miniaturized electronics. Here, we introduce a soft, stretchable nanocomposite system with built-in wireless electronics with an aim for feedback-loop motion control of a robotic earthworm. The nanostructured strain sensor, based on a carbon nanomaterial and a low-modulus silicone elastomer, allows for seamless integration with the body of the soft robot that can accommodate large strains caused by bending, stretching, and physical interactions with obstacles. A scalable, cost-effective, and screen-printing method manufactures an array of the strain sensors that are conductive and stretchable over 100% with a gauge factor over 38. An array of nanomembrane interconnectors enables a reliable connection between soft sensors and wireless electronics while tolerating the robot's multimodal movements. A set of computational and experimental studies of soft materials, stretchable mechanics, and hybrid packaging provides the key design factors for a reliable, nanocomposite sensor system. The miniaturized wireless circuit, embedded in the robot joint, offers real-time monitoring of strain changes during the motions of a robotic segment. Collectively, the soft sensor system presented in this work shows great potential to be integrated with other flexible, stretchable electronics for applications in soft robotics, wearable devices, and human-machine interfaces.


Assuntos
Nanocompostos/química , Nanotubos de Carbono/química , Robótica , Dispositivos Eletrônicos Vestíveis , Locomoção , Tamanho da Partícula , Propriedades de Superfície
4.
Biomaterials ; 213: 119219, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31132647

RESUMO

Mitochondria-targeted photodynamic therapy (PDT) has emerged as one of the most efficient antitumor strategies. However, the therapeutic outcome of mitochondria-targeted PDT nanocarriers has been hampered by its poor capability of endosome escape and always-ON mode which induces normal tissue damage. To tackle these limitations, herein a novel pH-activatable nanoparticle is developed with dual-stage targeting capacity of early endosome and mitochondria for exponential activation of fluorescent signals and photodynamic efficacy. This nanoparticle is composed of pH-responsive mPEG-b-PDPA-Cy7.5 fluorescent copolymer and mitochondria-targeted photosensitizer (TPPa). The TPPa-encapsulated nanoparticles (M-TPPa) exhibit 111- and 151-fold enhancement in fluorescent signal and singlet oxygen generation (SOG) on encounting acidic pH environment, respectively. The M-TPPa can be quickly endocytosed by cancer cells and immediately dissociate at acidic early endosome to activate fluorescent signals and photoactivity. Subsequently, the activated TPPa quickly translocates from early endosome to mitochondria. Under laser irradiation, singlet oxygen could be generated in mitochondria, inducing intrinsic apoptosis in human HO8910 ovarian cancer cells. M-TPPa also exhibits high tumor imaging contrast and remarkable inhibition on tumor progression without obvious toxicity in HO8910-tumor bearing mice. Therefore, the rationally designed nanoparticles, with precise dual-targeting of distinct organelles and theranostic signal amplification, provides a promising strategy for efficient cancer treatment.


Assuntos
Mitocôndrias/metabolismo , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Animais , Morte Celular , Linhagem Celular Tumoral , Meios de Contraste/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Endossomos/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete , Nanomedicina Teranóstica
5.
Sci Robot ; 3(15)2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33141681

RESUMO

Bioinspired soft machines made of highly deformable materials are enabling a variety of innovative applications, yet their locomotion typically requires several actuators that are independently activated. We harnessed kirigami principles to significantly enhance the crawling capability of a soft actuator. We designed highly stretchable kirigami surfaces in which mechanical instabilities induce a transformation from flat sheets to 3D-textured surfaces akin to the scaled skin of snakes. First, we showed that this transformation was accompanied by a dramatic change in the frictional properties of the surfaces. Then, we demonstrated that, when wrapped around an extending soft actuator, the buckling-induced directional frictional properties of these surfaces enabled the system to efficiently crawl.

6.
Sci Adv ; 3(4): e1602045, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28435879

RESUMO

Soft robots driven by stimuli-responsive materials have unique advantages over conventional rigid robots, especially in their high adaptability for field exploration and seamless interaction with humans. The grand challenge lies in achieving self-powered soft robots with high mobility, environmental tolerance, and long endurance. We are able to advance a soft electronic fish with a fully integrated onboard system for power and remote control. Without any motor, the fish is driven solely by a soft electroactive structure made of dielectric elastomer and ionically conductive hydrogel. The electronic fish can swim at a speed of 6.4 cm/s (0.69 body length per second), which is much faster than previously reported untethered soft robotic fish driven by soft responsive materials. The fish shows consistent performance in a wide temperature range and permits stealth sailing due to its nearly transparent nature. Furthermore, the fish is robust, as it uses the surrounding water as the electric ground and can operate for 3 hours with one single charge. The design principle can be potentially extended to a variety of flexible devices and soft robots.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa