Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant Cell Environ ; 47(4): 1363-1378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221855

RESUMO

Eucalyptus is a widely planted hardwood tree species due to its fast growth, superior wood properties and adaptability. However, the post-transcriptional regulatory mechanisms controlling tissue development and stress responses in Eucalyptus remain poorly understood. In this study, we performed a comprehensive analysis of the gene expression profile and the alternative splicing (AS) landscape of E. grandis using strand-specific RNA-Seq, which encompassed 201 libraries including different organs, developmental stages, and environmental stresses. We identified 10 416 genes (33.49%) that underwent AS, and numerous differentially expressed and/or differential AS genes involved in critical biological processes, such as primary-to-secondary growth transition of stems, adventitious root formation, aging and responses to phosphorus- or boron-deficiency. Co-expression analysis of AS events and gene expression patterns highlighted the potential upstream regulatory role of AS events in multiple processes. Additionally, we highlighted the lignin biosynthetic pathway to showcase the potential regulatory functions of AS events in the KNAT3 and IRL3 genes within this pathway. Our high-quality expression atlas and AS landscape serve as valuable resources for unravelling the genetic control of woody plant development, long-term adaptation, and understanding transcriptional diversity in Eucalyptus. Researchers can conveniently access these resources through the interactive ePlant browser (https://bar.utoronto.ca/eplant_eucalyptus).


Assuntos
Eucalyptus , Genes de Plantas , Genes de Plantas/genética , Eucalyptus/fisiologia , Processamento Alternativo/genética , Madeira , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
New Phytol ; 238(4): 1479-1497, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36797656

RESUMO

The acquisition of dormancy capabilities has enabled plants to survive in adverse terrestrial environmental conditions. Dormancy accumulation and release is coupled with light signaling, which is well studied in Arabidopsis, but it is unclear in the distant nonvascular relative. We study the characteristics and function on dormancy regulation of a blue light receptor cryptochrome in Marchantia polymorpha (MpCRY). Here, we identified MpCRY via bioinformatics and mutant complement analysis. The biochemical characteristics were assessed by multiple protein-binding assays. The function of MpCRY in gemma dormancy was clarified by overexpression and mutation of MpCRY, and its mechanism was analyzed via RNA sequencing and quantitative PCR analyses associated with hormone treatment. We found that the unique MpCRY protein in M. polymorpha undergoes both blue light-promoted interaction with itself (self-interaction) and blue light-dependent phosphorylation. MpCRY has the specific characteristics of blue light-induced nuclear localization and degradation. We further demonstrated that MpCRY transcriptionally represses abscisic acid (ABA) signaling-related gene expression to suppress gemma dormancy, which is dependent on blue light signaling. Our findings indicate that MpCRY possesses specific biochemical and molecular characteristics, and modulates ABA signaling under blue light conditions to regulate gemma dormancy in M. polymorpha.


Assuntos
Arabidopsis , Marchantia , Marchantia/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Plantas/metabolismo , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo
3.
J Exp Bot ; 74(3): 1090-1106, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36402548

RESUMO

The induction of seed dormancy and its release involve a finely regulated genetic program controlled by various environmental and developmental cues that are critical for plant survival and population expansion. Light plays a key role in seed dormancy and germination, but the molecular mechanisms underlying the control of dormancy are unclear. In the present study, high-resolution temporal RNA-seq in Arabidopsis identified WOX11 as encoding a hub transcription factor during the seed dormancy induction and release stages. This gene might have evolved from gymnosperms and expanded in angiosperms with highly conserved expression patterns in seeds. WOX11 and its homolog WOX12 were highly expressed from 2 d after pollination, and mRNA abundance was greatly increased during the seed dormancy induction and release stages. Further, we found that WOX11 plays a role in the regulation of seed dormancy downstream of phytochrome B (PHYB)-mediated red-light signaling during the induction stage, indicating that WOX11/12 are newly identified components of red-light signaling transduction. Taken together, our results suggest that WOX11/12-mediated PHYB signaling regulates seed dormancy in Arabidopsis, and provide insights into the developmental regulation and evolutionary adaptation of plants to changes in the light environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Homeodomínio , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Dormência de Plantas , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo
4.
Plant J ; 108(5): 1382-1399, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34587334

RESUMO

Malvids is one of the largest clades of rosids, includes 58 families and exhibits remarkable morphological and ecological diversity. Here, we report a high-quality chromosome-level genome assembly for Euscaphis japonica, an early-diverging species within malvids. Genome-based phylogenetic analysis suggests that the unstable phylogenetic position of E. japonica may result from incomplete lineage sorting and hybridization event during the diversification of the ancestral population of malvids. Euscaphis japonica experienced two polyploidization events: the ancient whole genome triplication event shared with most eudicots (commonly known as the γ event) and a more recent whole genome duplication event, unique to E. japonica. By resequencing 101 samples from 11 populations, we speculate that the temperature has led to the differentiation of the evergreen and deciduous of E. japonica and the completely different population histories of these two groups. In total, 1012 candidate positively selected genes in the evergreen were detected, some of which are involved in flower and fruit development. We found that reddening and dehiscence of the E. japonica pericarp and long fruit-hanging time promoted the reproduction of E. japonica populations, and revealed the expression patterns of genes related to fruit reddening, dehiscence and abscission. The key genes involved in pentacyclic triterpene synthesis in E. japonica were identified, and different expression patterns of these genes may contribute to pentacyclic triterpene diversification. Our work sheds light on the evolution of E. japonica and malvids, particularly on the diversification of E. japonica and the genetic basis for their fruit dehiscence and abscission.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Magnoliopsida/genética , Frutas/genética
5.
BMC Genomics ; 22(1): 45, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33423665

RESUMO

BACKGROUND: Aspartic proteases (APs) are a class of aspartic peptidases belonging to nine proteolytic enzyme families whose members are widely distributed in biological organisms. APs play essential functions during plant development and environmental adaptation. However, there are few reports about APs in fast-growing moso bamboo. RESULT: In this study, we identified a total of 129 AP proteins (PhAPs) encoded by the moso bamboo genome. Phylogenetic and gene structure analyses showed that these 129 PhAPs could be divided into three categories (categories A, B and C). The PhAP gene family in moso bamboo may have undergone gene expansion, especially the members of categories A and B, although homologs of some members in category C have been lost. The chromosomal location of PhAPs suggested that segmental and tandem duplication events were critical for PhAP gene expansion. Promoter analysis revealed that PhAPs in moso bamboo may be involved in plant development and responses to environmental stress. Furthermore, PhAPs showed tissue-specific expression patterns and may play important roles in rapid growth, including programmed cell death, cell division and elongation, by integrating environmental signals such as light and gibberellin signals. CONCLUSION: Comprehensive analysis of the AP gene family in moso bamboo suggests that PhAPs have experienced gene expansion that is distinct from that in rice and may play an important role in moso bamboo organ development and rapid growth. Our results provide a direction and lay a foundation for further analysis of plant AP genes to clarify their function during rapid growth.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Peptídeo Hidrolases , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo
6.
Plant Cell Rep ; 39(3): 381-391, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31828377

RESUMO

KEY MESSAGE: Trafficking protein particle (TRAPP) complexes subunit gene AtTrs33 plays an important role in keeping apical meristematic activity and dominance in Arabidopsis. TRAPP complexes, composed of multimeric subunits, are guanine-nucleotide exchange factors for certain Rab GTPases and are believed to be involved in the regulation of membrane trafficking, but the cases in Arabidopsis are largely unknown. Trs33, recently proposed to be a component of TRAPP IV, is non-essential in yeast cells. A single copy of Trs33 gene, AtTrs33, was identified in Arabidopsis. GUS activity assay indicated that AtTrs33 was ubiquitously expressed. Based on a T-DNA insertion line, we found that loss-of-function of AtTrs33 is lethal for apical growth. Knock-down or knock-in of AtTrs33 affects apical meristematic growth and fertility, which indicates that AtTrs33 plays an important role in keeping apical meristematic activity and dominance in Arabidopsis. Analysis of auxin responses and PIN1/2 localization indicate that impaired apical meristematic activity and dominance were caused by altered auxin responses through non-polarized PIN1 localization. The present study reported that AtTrs33 plays an essential role in Arabidopsis cell growth and organization, which is different with its homologue in yeast. These findings provide new insights into the functional divergence of TRAPP subunits.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Meristema/citologia , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células/efeitos dos fármacos , Fertilidade/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Transcrição Gênica/efeitos dos fármacos , Proteínas de Transporte Vesicular/genética
7.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086706

RESUMO

MYB transcription factors have a wide range of functions in plant growth, hormone signaling, salt, and drought tolerances. In this study, two homologous transcription factors, PtrMYB55 and PtrMYB121, were isolated and their functions were elucidated. Tissue expression analysis revealed that PtrMYB55 and PtrMYB121 had a similar expression pattern, which had the highest expression in stems. Their expression continuously increased with the growth of poplar, and the expression of PtrMYB121 was significantly upregulated in the process. The full length of PtrMYB121 was 1395 bp, and encoded protein contained 464 amino acids including conserved R2 and R3 MYB domains. We overexpressed PtrMYB121 in Arabidopsis thaliana, and the transgenic lines had the wider xylem as compared with wild-type Arabidopsis. The contents of cellulose and lignin were obviously higher than those in wild-type materials, but there was no significant change in hemicellulose. Quantitative real-time PCR demonstrated that the key enzyme genes regulating the synthesis of lignin and cellulose were significantly upregulated in the transgenic lines. Furthermore, the effector-reporter experiment confirmed that PtrMYB121 bound directly to the promoters of genes relating to the synthesis of lignin and cellulose. These results suggest that PtrMYB121 may positively regulate the formation of secondary cell wall by promoting the synthesis of lignin and cellulose.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Vias Biossintéticas/genética , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Populus/genética , Xilema/metabolismo
8.
Plant J ; 92(3): 426-436, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833729

RESUMO

Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Criptocromos/metabolismo , Retroalimentação Fisiológica/efeitos da radiação , Fotorreceptores de Plantas/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Criptocromos/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes Reporter , Luz , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fotorreceptores de Plantas/genética , Fitocromo/metabolismo , Fitocromo/efeitos da radiação , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Plant Mol Biol ; 98(4-5): 389-406, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30324253

RESUMO

KEY MESSAGE: WUSCHEL-RELATED HOMEOBOX 11 establishes the acquisition of pluripotency during callus formation and accomplishes de novo shoot formation by regulating key transcription factors in poplar. De novo shoot regeneration is a prerequisite for propagation and genetic engineering of elite cultivars in forestry. However, the regulatory mechanism of de novo organogenesis is poorly understood in tree species. We previously showed that WUSCHEL (WUS)-RELATED HOMEOBOX 11 (PtWOX11) of the hybrid poplar clone 84K (Populus alba × P. glandulosa) promotes de novo root formation. In this study, we found that PtWOX11 also regulates de novo shoot regeneration in poplar. The overexpression of PtWOX11 enhanced de novo shoot formation, whereas overexpression of PtWOX11 fused with the transcriptional repressor domain (PtWOX11-SRDX) or reduced expression of PtWOX11 inhibited this process, indicating that PtWOX11 promotes de novo shoot organogenesis. Although PtWOX11 promotes callus formation, overexpression of PtWOX11 and PtWOX11-SRDX also produced increased and decreased numbers of de novo shoots per unit weight, respectively, implying that PtWOX11 promotes de novo shoot organogenesis partially by regulating the intrinsic mechanism of shoot development. RNA-seq and qPCR analysis further revealed that PtWOX11 activates the expression of PLETHORA1 (PtPLT1) and PtPLT2, whose Arabidopsis paralogs establish the acquisition of pluripotency, during incubation on callus-inducing medium. Moreover, PtWOX11 activates the expression of shoot-promoting factors and meristem regulators such as CUP-SHAPED COTYLEDON2 (PtCUC2), PtCUC3, WUS and SHOOT MERISTEMLESS to fulfill shoot regeneration during incubation on shoot-inducing medium. These results suggest that PtWOX11 acts as a central regulator of the expression of key genes to cause de novo shoot formation. Our studies further provide a possible means to genetically engineer economically important tree species for their micropropagation.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Populus/genética , Fatores de Transcrição/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Fatores de Transcrição/genética
10.
BMC Plant Biol ; 18(1): 124, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914373

RESUMO

BACKGROUND: Rab proteins form the largest family of the Ras superfamily of small GTP-binding proteins and regulate intracellular trafficking pathways. However, the function of the Rab proteins in woody species is still an open question. RESULTS: Here, a total of 67 PtRabs were identified in Populus trichocarpa and categorized into eight subfamilies (RabA-RabH). Based on their chromosomal distribution and duplication blocks in the Populus genome, a total of 27 PtRab paralogous pairs were identified and all of them were generated by whole-genome duplication events. Combined the expression correlation and duplication date, the PtRab paralogous pairs that still keeping highly similar expression patterns were generated around the latest large-scale duplication (~ 13 MYA). The cis-elements and co-expression network of unique expanded PtRabs suggest their potential roles in poplar development and environmental responses. Subcellular localization of PtRabs from each subfamily indicates each subfamily shows a localization pattern similar to what is revealed in Arabidopsis but RabC shows a localization different from their counterparts. Furthermore, we characterized PtRabE1b by overexpressing its constitutively active mutant PtRabE1b(Q74L) in poplar and found that PtRabE1b(Q74L) enhanced the salt tolerance. CONCLUSIONS: These findings provide new insights into the functional divergence of PtRabs and resources for genetic engineering resistant breeding in tree species.


Assuntos
Genes de Plantas/genética , Proteínas de Plantas/genética , Populus/genética , Plantas Tolerantes a Sal/genética , Proteínas rab de Ligação ao GTP/genética , Cromossomos de Plantas/genética , Sequência Conservada/genética , Genes de Plantas/fisiologia , Filogenia , Proteínas de Plantas/fisiologia , Populus/fisiologia , Regiões Promotoras Genéticas/genética , Tolerância ao Sal , Plantas Tolerantes a Sal/fisiologia , Transcriptoma , Proteínas rab de Ligação ao GTP/fisiologia
11.
Int J Mol Sci ; 19(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336592

RESUMO

Flower and fruit colors are of vital importance to the ecology and economic market value of plants. The mechanisms of flower and fruit coloration have been well studied, especially among ornamental flower plants and cultivated fruits. As people pay more attention to exocarp coloration, the endocarp coloration in some species has often been ignored. Here, we report on the molecular mechanism of endocarp coloration in three development stages of Euscaphis konishii. The results show that endocarp reddening is closely related to anthocyanin accumulation, and a total of 86,120 unigenes were assembled, with a mean length of 893 bp (N50 length of 1642 bp). We identified a large number of differentially expressed genes associated with endocarp coloration, including anthocyanin biosynthesis, carotenoid biosynthesis, and chlorophyll breakdown. The genes participating in each step of the anthocyanin biosynthesis were found in the transcriptome dataset, but a few genes were found in the carotenoid biosynthesis and chlorophyll breakdown. In addition, the candidate R2R3-MYB transcription factors and candidate glutathione S-transferase transport genes, which likely regulate the anthocyanin biosynthesis, were identified. This study offers a platform for E. konishii functional genomic research and provides a reference for revealing the regulatory mechanisms of endocarp reddening.


Assuntos
Frutas/genética , Malvaceae/genética , Pigmentação/genética , Análise de Sequência de RNA , Transcriptoma/genética , Antocianinas/biossíntese , Carotenoides/biossíntese , Clorofila/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Família Multigênica , Mapas de Interação de Proteínas/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
12.
J Plant Res ; 129(2): 137-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26810763

RESUMO

Cryptochromes (CRY) are flavoproteins that direct a diverse array of developmental processes in response to blue light in plants. Conformational changes in CRY are induced by the absorption of photons and result in the propagation of light signals to downstream components. In Arabidopsis, CRY1 and CRY2 serve both distinct and partially overlapping functions in regulating photomorphogenic responses and photoperiodic flowering. For example, both CRY1 and CRY2 regulate the abundance of transcription factors by directly reversing the activity of E3 ubiquitin ligase on CONSTITUTIVE PHOTOMORPHOGENIC 1 and SUPPRESSOR OF PHYA-105 1 complexes in a blue light-dependent manner. CRY2 also specifically governs a photoperiodic flowering mechanism by directly interacting with a transcription factor called CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX. Recently, structure/function analysis of CRY1 revealed that the CONSTITUTIVE PHOTOMORPHOGENIC 1 independent pathway is also involved in CRY1-mediated inhibition of hypocotyl elongation. CRY1 and CRY2 thus not only share a common pathway but also relay light signals through distinct pathways, which may lead to altered developmental programs in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Criptocromos/metabolismo , Transdução de Sinal Luminoso , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/efeitos da radiação , Criptocromos/química , Criptocromos/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Hipocótilo/fisiologia , Hipocótilo/efeitos da radiação , Luz , Fosforilação , Domínios Proteicos , Fatores de Transcrição/metabolismo
13.
BMC Genomics ; 16: 181, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25887520

RESUMO

BACKGROUND: Heat shock proteins (Hsps) are molecular chaperones that are involved in many normal cellular processes and stress responses, and heat shock factors (Hsfs) are the transcriptional activators of Hsps. Hsfs and Hsps are widely coordinated in various biological processes. Although the roles of Hsfs and Hsps in stress responses have been well characterized in Arabidopsis, their roles in perennial woody species undergoing various environmental stresses remain unclear. RESULTS: Here, a comprehensive identification and analysis of Hsf and Hsp families in poplars is presented. In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication. The gene structure and motif composition are relatively conserved in each subfamily. Microarray and quantitative real-time RT-PCR analyses showed that most of the Populus Hsf and Hsp genes are differentially expressed upon exposure to various stresses. A coexpression network between Populus Hsf and Hsp genes was generated based on their expression. Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses. CONCLUSIONS: The comprehensive analysis indicates that different sets of PtHsps are downstream of particular PtHsfs and provides a basis for functional studies aimed at revealing the roles of these families in poplar development and stress responses.


Assuntos
Genes de Plantas , Família Multigênica , Populus/genética , Motivos de Aminoácidos , Mapeamento Cromossômico , Sequência Conservada , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genoma de Planta , Especificidade de Órgãos/genética , Filogenia , Estresse Fisiológico , Transcrição Gênica
14.
BMC Genomics ; 15: 296, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24750781

RESUMO

BACKGROUND: WUSCHEL (WUS)-related homeobox (WOX) protein family members play important roles in the maintenance and proliferation of the stem cell niche in the shoot apical meristem (SAM), root apical meristem (RAM), and cambium (CAM). Although the roles of some WOXs in meristematic cell regulation have been well studied in annual plants such as Arabidopsis and rice, the expression and function of WOX members in woody plant poplars has not been systematically investigated. Here, we present the identification and comprehensive analysis of the expression and function of WOXs in Populus tomentosa. RESULTS: A genome-wide survey identified 18 WOX encoding sequences in the sequenced genome of Populus trichocarpa (PtrWOXs). Phylogenetic and gene structure analysis revealed that these 18 PtrWOXs fall into modern/WUS, intermediate, and ancient clades, but that the WOX genes in P. trichocarpa may have expanded differently from the WOX genes in Arabidopsis. In the P. trichocarpa genome, no WOX members could be closely classified as AtWOX3, AtWOX6, AtWOX7, AtWOX10, and AtWOX14, but there were two copies of WOX genes that could be classified as PtrWUS, PtrWOX2, PtrWOX4, PtrWOX5, PtrWOX8/9, and PtrWOX11/12, and three copies of WOX genes that could be classified as PtrWOX1 and PtrWOX13. The use of primers specific for each PtrWOX gene allowed the identification and cloning of 18 WOX genes from P. tomentosa (PtoWOXs), a poplar species physiologically close to P. trichocarpa. It was found that PtoWOXs and PtrWOXs shared very high amino acid sequence identity, and that PtoWOXs could be classified identically to PtrWOXs. We revealed that the expression patterns of some PtoWOXs were different to their Arabidopsis counterparts. When PtoWOX5a and PtoWOX11/12a, as well as PtoWUSa and PtoWOX4a were ectopically expressed in transgenic hybrid poplars, the regeneration of adventitious root (AR) was promoted, indicating a functional similarity of these four WOXs in AR regeneration. CONCLUSIONS: This is the first attempt towards a systematical analysis of the function of WOXs in P. tomentosa. A diversified expression, yet functional similarity of PtoWOXs in AR regeneration is revealed. Our findings provide useful information for further elucidation of the functions and mechanisms of WOXs in the development of poplars.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Populus/genética , Transporte Ativo do Núcleo Celular , Cromossomos de Plantas , Duplicação Gênica , Perfilação da Expressão Gênica , Genes de Plantas , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Fenótipo , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Populus/metabolismo , Regiões Promotoras Genéticas , Transporte Proteico , Regeneração/genética
15.
J Exp Bot ; 65(9): 2437-48, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24663343

RESUMO

The plant hormone auxin is a key regulator of plant development, and its uneven distribution maintained by polar intercellular auxin transport in plant tissues can trigger a wide range of developmental processes. Although the roles of PIN-FORMED (PIN) proteins in intercellular auxin flow have been extensively characterized in Arabidopsis, their roles in woody plants remain unclear. Here, a comprehensive analysis of PIN proteins in Populus is presented. Fifteen PINs are encoded in the genome of Populus, including four PIN1s, one PIN2, two PIN3s, three PIN5s, three PIN6s, and two PIN8s. Similar to Arabidopsis AtPIN proteins, PtPINs share conserved topology and transmembrane domains, and are either plasma membrane- or endoplasmic reticulum-localized. The more diversified expansion of the PIN family in Populus, comparing to that in Arabidopsis, indicates that some auxin-regulated developmental processes, such as secondary growth, may exhibit unique features in trees. More importantly, different sets of PtoPINs have been found to be strongly expressed in the roots, leaves, and cambium in Populus; the dynamic expression patterns of selected PtoPINs were further examined during the regeneration of shoots and roots. This genome-wide analysis of the Populus PIN family provides important cues for their potential roles in tree growth and development.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Populus/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana Transportadoras/genética , Filogenia , Proteínas de Plantas/genética , Populus/classificação , Populus/genética , Populus/crescimento & desenvolvimento , Transporte Proteico
16.
BMC Genomics ; 14: 532, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23915275

RESUMO

BACKGROUND: Members of the heat shock protein 90 (Hsp90) class of proteins are evolutionarily conserved molecular chaperones. They are involved in protein folding, assembly, stabilization, activation, and degradation in many normal cellular processes and under stress conditions. Unlike many other well-characterized molecular chaperones, Hsp90s play key roles in signal transduction, cell-cycle control, genomic silencing, and protein trafficking. However, no systematic analysis of genome organization, gene structure, and expression compendium has been performed in the Populus model tree genus to date. RESULTS: We performed a comprehensive analysis of the Populus Hsp90 gene family and identified 10 Populus Hsp90 genes, which were phylogenetically clustered into two major groups. Gene structure and motif composition are relatively conserved in each group. In Populus trichocarpa, we identified three paralogous pairs, among which the PtHsp90-5a/PtHsp90-5b paralogous pair might be created by duplication of a genome segment. Subcellular localization analysis shows that PtHsp90 members are localized in different subcellular compartments. PtHsp90-3 is localized both in the nucleus and in the cytoplasm, PtHsp90-5a and PtHsp90-5b are in chloroplasts, and PtHsp90-7 is in the endoplasmic reticulum (ER). Furthermore, microarray and semi-quantitative real-time RT-PCR analyses show that a number of Populus Hsp90 genes are differentially expressed upon exposure to various stresses. CONCLUSIONS: The gene structure and motif composition of PtHsp90s are highly conserved among group members, suggesting that members of the same group may also have conserved functions. Microarray and RT-PCR analyses show that most PtHsp90s were induced by various stresses, including heat stress. Collectively, these observations lay the foundation for future efforts to unravel the biological roles of PtHsp90 genes.


Assuntos
Perfilação da Expressão Gênica , Genômica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Resposta ao Choque Térmico/genética , Populus/genética , Populus/fisiologia , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Espaço Intracelular/metabolismo , Filogenia , Populus/citologia , Transporte Proteico , Especificidade da Espécie
17.
Front Genet ; 12: 737293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069676

RESUMO

Euscaphis konishii is an evergreen plant that is widely planted as an industrial crop in Southern China. It produces red fruits with abundant secondary metabolites, giving E. konishii high medicinal and ornamental value. Auxin signaling mediated by members of the AUXIN RESPONSE FACTOR (ARF) and auxin/indole-3-acetic acid (Aux/IAA) protein families plays important roles during plant growth and development. Aux/IAA and ARF genes have been described in many plants but have not yet been described in E. konishii. In this study, we identified 34 EkIAA and 29 EkARF proteins encoded by the E. konishii genome through database searching using HMMER. We also performed a bioinformatic characterization of EkIAA and EkARF genes, including their phylogenetic relationships, gene structures, chromosomal distribution, and cis-element analysis, as well as conserved motifs in the proteins. Our results suggest that EkIAA and EkARF genes have been relatively conserved over evolutionary history. Furthermore, we conducted expression and co-expression analyses of EkIAA and EkARF genes in leaves, branches, and fruits, which identified a subset of seven EkARF genes as potential regulators of triterpenoids and anthocyanin biosynthesis. RT-qPCR, yeast one-hybrid, and transient expression analyses showed that EkARF5.1 can directly interact with auxin response elements and regulate downstream gene expression. Our results may pave the way to elucidating the function of EkIAA and EkARF gene families in E. konishii, laying a foundation for further research on high-yielding industrial products and E. konishii breeding.

18.
Front Plant Sci ; 11: 620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547574

RESUMO

Black poplar (Populus deltoides, P. nigra, and their hybrids) is the main poplar cultivars in China. It offers interesting options of large-scale biomass production for bioenergy due to its rapid growth and high yield. Poplar wood properties were associated with chemical components and physical structures during wood formation. In this study, five poplar cultivars, P. euramericana 'Zhonglin46' (Pe1), P. euramericana 'Guariento' (Pe2), P. nigra 'N179' (Pn1), P. deltoides 'Danhong' (Pd1), and P. deltoides 'Nanyang' (Pd2), were used to explore the molecular mechanism of xylem development. We analyzed the structural differences of developing xylem in the five cultivars and profiled the transcriptome-wide gene expression patterns through RNA sequencing. The cross sections of the developing xylem showed that the cell wall thickness of developed fiber in Pd1 was thickest and the number of xylem vessels of Pn1 was the least. A total of 10,331 differentially expressed genes were identified among 10 pairwise comparisons of the five cultivars, most of them were related to programmed cell death and secondary cell wall thickening. K-means cluster analysis and Gene Ontology enrichment analysis showed that the genes highly expressed in Pd1 were related to nucleotide decomposition, metabolic process, transferase, and microtubule cytoskeleton; whereas the genes highly expressed in Pn1 were involved in cell wall macromolecule decomposition and polysaccharide binding processes. Based on a weighted gene co-expression network analysis, a large number of candidate regulators for xylem development were identified. And their potential regulatory roles to cell wall biosynthesis genes were validated by a transient overexpression system. This study provides a set of promising candidate regulators for genetic engineering to improve feedstock and enhance biofuel conversion in the bioenergy crop Populus.

19.
Evol Appl ; 13(1): 210-227, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892953

RESUMO

Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water-conducting systems, secondary metabolism, stress defense mechanisms, and small RNA-mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole-genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications.

20.
Sheng Li Ke Xue Jin Zhan ; 40(2): 117-22, 2009 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-19558139

RESUMO

Nano biotechnology is a developing field of science and technology in the 21st century. The emergence of nanomaterials provides a new way for gene carriers. This paper demonstrates the advantages and types of nano-scale genic carriers and the methods for introducing it into the body, and reviewed the application of nano-scale genic carriers in gene therapy and in breeding.


Assuntos
Biotecnologia/métodos , Vetores Genéticos , Nanotecnologia , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa