Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nature ; 624(7992): 611-620, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907096

RESUMO

Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.


Assuntos
Senescência Celular , Quitinases , Microglia , Neurônios Motores , Primatas , Medula Espinal , Animais , Humanos , Biomarcadores/metabolismo , Quitinases/metabolismo , Microglia/enzimologia , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Primatas/metabolismo , Reprodutibilidade dos Testes , Análise da Expressão Gênica de Célula Única , Medula Espinal/metabolismo , Medula Espinal/patologia
2.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735108

RESUMO

Metabolites such as crotonyl-CoA and lactyl-CoA influence gene expression by covalently modifying histones, known as histone lysine crotonylation (Kcr) and lysine lactylation (Kla). However, the existence patterns, dynamic changes, biological functions and associations of these modifications with histone lysine acetylation and gene expression during mammalian development remain largely unknown. Here, we find that histone Kcr and Kla are widely distributed in the brain and undergo global changes during neural development. By profiling the genome-wide dynamics of H3K9ac, H3K9cr and H3K18la in combination with ATAC and RNA sequencing, we reveal that these marks are tightly correlated with chromatin state and gene expression, and extensively involved in transcriptome remodeling to promote cell-fate transitions in the developing telencephalon. Importantly, we demonstrate that global Kcr and Kla levels are not the consequence of transcription and identify the histone deacetylases (HDACs) 1-3 as novel 'erasers' of H3K18la. Using P19 cells as an induced neural differentiation system, we find that HDAC1-3 inhibition by MS-275 pre-activates neuronal transcriptional programs by stimulating multiple histone lysine acylations simultaneously. These findings suggest that histone Kcr and Kla play crucial roles in the epigenetic regulation of neural development.


Assuntos
Histonas , Lisina , Acetilação , Animais , Epigênese Genética , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/metabolismo , Processamento de Proteína Pós-Traducional
3.
Mol Psychiatry ; 27(7): 2999-3009, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484239

RESUMO

The embryonic ectoderm development (EED) is a core component of the polycomb-repressive complex 2 (PRC2) whose mutations are linked to neurodevelopmental abnormalities, intellectual disability, and neurodegeneration. Although EED has been extensively studied in neural stem cells and oligodendrocytes, its role in microglia is incompletely understood. Here, we show that microglial EED is essential for synaptic pruning during the postnatal stage of brain development. The absence of microglial EED at early postnatal stages resulted in reduced spines and impaired synapse density in the hippocampus at adulthood, accompanied by upregulated expression of phagocytosis-related genes in microglia. As a result, deletion of microglial Eed impaired hippocampus-dependent learning and memory in mice. These results suggest that microglial EED is critical for normal synaptic and cognitive functions during postnatal development.


Assuntos
Microglia , Células-Tronco Neurais , Animais , Hipocampo/metabolismo , Camundongos , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Sinapses/metabolismo
4.
EMBO Rep ; 22(10): e52023, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34369651

RESUMO

Histone lysine crotonylation (Kcr), an evolutionarily conserved and widespread non-acetyl short-chain lysine acylation, plays important roles in transcriptional regulation and disease processes. However, the genome-wide distribution, dynamic changes, and associations with gene expression of histone Kcr during developmental processes are largely unknown. In this study, we find that histone Kcr is mainly located in active promoter regions, acts as an epigenetic hallmark of highly expressed genes, and regulates genes participating in metabolism and proliferation. Moreover, elevated histone Kcr activates bivalent promoters to stimulate gene expression in neural stem/progenitor cells (NSPCs) by increasing chromatin openness and recruitment of RNA polymerase II (RNAP2). Functionally, these activated genes contribute to transcriptome remodeling and promote neuronal differentiation. Overall, histone Kcr marks active promoters with high gene expression and modifies the local chromatin environment to allow gene activation.


Assuntos
Histonas , Células-Tronco Neurais , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional
5.
Acta Pharmacol Sin ; 44(1): 234-243, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35840659

RESUMO

Inositol-requiring enzyme 1α (IRE1α) is the most conserved endoplasmic reticulum (ER) stress sensor with two catalytic domains, kinase and RNase, in its cytosolic portion. IRE1α inhibitors have been used to improve existing clinical treatments against various cancers. In this study we identified toxoflavin (TXF) as a new-type potent small molecule IRE1α inhibitor. We used luciferase reporter systems to screen compounds that inhibited the IRE1α-XBP1s signaling pathway. As a result, TXF was found to be the most potent IRE1α RNase inhibitor with an IC50 value of 0.226 µM. Its inhibitory potencies on IRE1α kinase and RNase were confirmed in a series of cellular and in vitro biochemical assays. Kinetic analysis showed that TXF caused time- and reducing reagent-dependent irreversible inhibition on IRE1α, implying that ROS might participate in the inhibition process. ROS scavengers decreased the inhibition of IRE1α by TXF, confirming that ROS mediated the inhibition process. Mass spectrometry analysis revealed that the thiol groups of four conserved cysteine residues (CYS-605, CYS-630, CYS-715 and CYS-951) in IRE1α were oxidized to sulfonic groups by ROS. In molecular docking experiments we affirmed the binding of TXF with IRE1α, and predicted its binding site, suggesting that the structure of TXF itself participates in the inhibition of IRE1α. Interestingly, CYS-951 was just near the docked site. In addition, the RNase IC50 and ROS production in vitro induced by TXF and its derivatives were negative correlated (r = -0.872). In conclusion, this study discovers a new type of IRE1α inhibitor that targets a predicted new alternative site located in the junction between RNase domain and kinase domain, and oxidizes conserved cysteine residues of IRE1α active sites to inhibit IRE1α. TXF could be used as a small molecule tool to study IRE1α's role in ER stress.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Endorribonucleases/química , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Inositol , Espécies Reativas de Oxigênio , Cisteína , Cinética , Simulação de Acoplamento Molecular , Ribonucleases/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Inibidores Enzimáticos/farmacologia , Estresse Oxidativo
6.
Glia ; 69(5): 1292-1306, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33492723

RESUMO

Neurotrauma has been recognized as a risk factor for neurodegenerative diseases, and sex difference of the incidence and outcome of neurodegenerative diseases has long been recognized. Past studies suggest that microglia could play a versatile role in both health and disease. So far, the microglial mechanisms underlying neurodegeneration and potentially lead to sex-specific therapies are still very open. Here we applied whole transcriptome analysis of microglia acutely isolated at different timepoints after a cortical stab wound injury to gain insight into genes that might be dysregulated and transcriptionally different between males and females after cortical injury. We found that microglia displayed distinct temporal and sexual molecular signatures of transcriptome after cortical injury. Hypotheses and gene candidates that we presented in the present study could be worthy to be examined to explore the roles of microglia in neurotrauma and in sex-biased neurodegenerative diseases.


Assuntos
Microglia , Doenças Neurodegenerativas , Encéfalo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Doenças Neurodegenerativas/genética , Transcriptoma
7.
Genes Dev ; 27(13): 1473-83, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23796896

RESUMO

Regulated gene expression determines the intrinsic ability of neurons to extend axons, and loss of such ability is the major reason for the failed axon regeneration in the mature mammalian CNS. MicroRNAs and histone modifications are key epigenetic regulators of gene expression, but their roles in mammalian axon regeneration are not well explored. Here we report microRNA-138 (miR-138) as a novel suppressor of axon regeneration and show that SIRT1, the NAD-dependent histone deacetylase, is the functional target of miR-138. Importantly, we provide the first evidence that miR-138 and SIRT1 regulate mammalian axon regeneration in vivo. Moreover, we found that SIRT1 also acts as a transcriptional repressor to suppress the expression of miR-138 in adult sensory neurons in response to peripheral nerve injury. Therefore, miR-138 and SIRT1 form a mutual negative feedback regulatory loop, which provides a novel mechanism for controlling intrinsic axon regeneration ability.


Assuntos
Axônios/fisiologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Regeneração/genética , Sirtuína 1/metabolismo , Animais , Células Cultivadas , Camundongos , MicroRNAs/genética , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais , Sirtuína 1/genética
8.
J Neurosci ; 39(46): 9107-9118, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31597725

RESUMO

Although several genes have been identified to promote axon regeneration in the CNS, our understanding of the molecular mechanisms by which mammalian axon regeneration is regulated is still limited and fragmented. Here by using female mouse sensory axon and optic nerve regeneration as model systems, we reveal an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. We also provide evidence that TERT and p53 act downstream of c-Myc to control sensory axon regeneration. More importantly, overexpression of p53 in sensory neurons and retinal ganglion cells is sufficient to promote sensory axon and optic never regeneration, respectively. The study reveals a novel c-Myc-TERT-p53 signaling pathway, expanding horizons for novel approaches promoting CNS axon regeneration.SIGNIFICANCE STATEMENT Despite significant progress during the past decade, our understanding of the molecular mechanisms by which mammalian CNS axon regeneration is regulated is still fragmented. By using sensory axon and optic nerve regeneration as model systems, the study revealed an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. The results also delineated a c-Myc-TERT-p53 pathway in controlling axon growth. Last, our results demonstrated that p53 alone was sufficient to promote sensory axon and optic nerve regeneration in vivo Collectively, the study not only revealed a new mechanisms underlying mammalian axon regeneration, but also expanded the pool of potential targets that can be manipulated to enhance CNS axon regeneration.


Assuntos
Axônios/metabolismo , Gânglios Espinais/metabolismo , Regeneração Nervosa , Nervo Óptico/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Telomerase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Células Cultivadas , Feminino , Camundongos Endogâmicos C57BL
9.
J Cell Physiol ; 235(4): 4011-4021, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31625158

RESUMO

The anatomical structure of the mammalian cerebral cortex is the essential foundation for its complex neural activity. This structure is developed by proliferation, differentiation, and migration of neural progenitor cells (NPCs), the fate of which is spatially and temporally regulated by the proper gene. This study was used in utero electroporation and found that the well-known oncogene c-Myc mainly promoted NPCs' proliferation and their transformation into intermediate precursor cells. Furthermore, the obtained results also showed that c-Myc blocked the differentiation of NPCs to postmitotic neurons, and the expression of telomere reverse transcriptase was controlled by c-Myc in the neocortex. These findings indicated c-Myc as a key regulator of the fate of NPCs during the development of the cerebral cortex.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Proteínas Proto-Oncogênicas c-myc/genética , Células-Tronco/citologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Córtex Cerebral/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Gravidez , Células-Tronco/metabolismo
10.
J Cell Physiol ; 234(12): 22517-22528, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31102288

RESUMO

The inflammatory response is a critical regulator for the regeneration of axon following nervous system injury. Nuclear factor-kappa B (NF-κB) is characteristically known for its ubiquitous role in the inflammatory response. However, its functional role in adult mammalian axon growth remains elusive. Here, we found that the NF-κB signaling pathway is activated in adult sensory neurons through peripheral axotomy. Furthermore, inhibition of NF-κB in peripheral sensory neurons attenuated their axon growth in vitro and in vivo. Our results also showed that NF-κB modulated axon growth by repressing the phosphorylation of STAT3. Furthermore, activation of STAT3 significantly promoted adult optic nerve regeneration. Taken together, the findings of our study indicated that NF-κB/STAT3 cascade is a critical regulator of intrinsic axon growth capability in the adult nervous system.


Assuntos
Axônios/fisiologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regeneração/fisiologia , Fator de Transcrição STAT3/metabolismo , Animais , Anticorpos , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Gliceraldeído 3-Fosfato/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Nervo Óptico , Prolina/análogos & derivados , Prolina/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Nervo Isquiático , Tiocarbamatos/farmacologia
11.
J Cell Physiol ; 234(12): 23053-23065, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31134625

RESUMO

While axon regeneration is a key determinant of functional recovery of the nervous system after injury, it is often poor in the mature nervous system. Influx of extracellular calcium (Ca2+ ) is one of the first phenomena that occur following axonal injury, and calcium/calmodulin-dependent protein kinase II (CaMKII), a target substrate for calcium ions, regulates the status of cytoskeletal proteins such as F-actin. Herein, we found that peripheral axotomy activates CaMKII in dorsal root ganglion (DRG) sensory neurons, and inhibition of CaMKII impairs axon outgrowth in both the peripheral and central nervous systems (PNS and CNS, respectively). Most importantly, we also found that the activation of CaMKII promotes PNS and CNS axon growth, and regulatory effects of CaMKII on axon growth occur via affecting the length of the F-actin. Thus, we believe our findings provide clear evidence that CaMKII is a critical modulator of mammalian axon regeneration.


Assuntos
Actinas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Regeneração Nervosa/genética , Crescimento Neuronal/genética , Animais , Axônios/metabolismo , Axônios/patologia , Cálcio/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/metabolismo , Cones de Crescimento/metabolismo , Humanos , Camundongos , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/patologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia
13.
Biochem Biophys Res Commun ; 499(2): 246-252, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567480

RESUMO

Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system.


Assuntos
Envelhecimento/metabolismo , Axônios/fisiologia , Fator de Transcrição GATA4/metabolismo , Gânglios Espinais/metabolismo , Regeneração Nervosa/fisiologia , Proteína Wnt3/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Células Cultivadas , Regulação para Baixo/genética , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Camundongos , Fenótipo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Wnt3/genética
15.
Neural Plast ; 2016: 1279051, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818801

RESUMO

Spinal cord injury is a devastating disease which disrupts the connections between the brain and spinal cord, often resulting in the loss of sensory and motor function below the lesion site. Most injured neurons fail to regenerate in the central nervous system after injury. Multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration after injury. MicroRNAs can modulate multiple genes' expression and are tightly controlled during nerve development or the injury process. Evidence has demonstrated that microRNAs and their signaling pathways play important roles in mediating axon regeneration and glial scar formation after spinal cord injury. This article reviews the role and mechanism of differentially expressed microRNAs in regulating axon regeneration and glial scar formation after spinal cord injury, as well as their therapeutic potential for promoting axonal regeneration and repair of the injured spinal cord.


Assuntos
Axônios/fisiologia , MicroRNAs/genética , Regeneração Nervosa/genética , Neurônios/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/genética , Animais , Modelos Animais de Doenças , Humanos , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
16.
Biochim Biophys Acta ; 1830(11): 5175-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23872355

RESUMO

BACKGROUND: Targeting multiple aspects of cellular metabolism, such as both aerobic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), has the potential to improve cancer therapeutics. Berberine (BBR), a widely used traditional Chinese medicine, exerts its antitumor effects by inhibiting OXPHOS. 2-Deoxy-d-glucose (2-DG) targets aerobic glycolysis and demonstrates potential anticancer effects in the clinic. We hypothesized that BBR in combination with 2-DG would be more efficient than either agent alone against cancer cell growth. METHODS: The effects of BBR and 2-DG on cancer cell growth were evaluated using the Sulforhodamine B (SRB) method. Cell death was detected with the PI uptake assay, and Western blot, Q-PCR and luciferase reporter assays were used for signaling pathway detection. An adenovirus system was used for gene overexpression. RESULTS: BBR combined with 2-DG synergistically enhanced the growth inhibition of cancer cells in vitro. Further mechanistic studies showed that the combination drastically enhanced ATP depletion and strongly disrupted the unfolded protein response (UPR). Overexpressing GRP78 partially prevented the cancer cell inhibition induced by both compounds. CONCLUSIONS: Here, we report for the first time that BBR and 2-DG have a synergistic effect on cancer cell growth inhibition related to ATP energy depletion and disruption of UPR. GENERAL SIGNIFICANCE: Our results propose the potential use of BBR and 2-DG in combination as an anticancer treatment, reinforcing the hypothesis that targeting both aerobic glycolysis and OXPHOS provides more effective cancer therapy and highlighting the important role of UPR in the process.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Berberina/farmacologia , Desoxiglucose/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Metabolismo Energético/efeitos dos fármacos , Células HCT116 , Células HEK293 , Proteínas de Choque Térmico/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos
17.
Biochem Biophys Res Commun ; 450(1): 433-9, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24909686

RESUMO

HDAC6 is a major cytoplasmic deacetylase. XBP1s is a basic-region leucine zipper (bZIP) transcriptional factor. Despite their mutual involvement in the anti-oxidative process, there are no reports about their inter-protein interactions so far. Here we identified a direct link between HDAC6 inhibition and XBP1s transcription activity in anti-oxidative damage. We showed that the specific HDAC6 inhibitor Tubastatin A could up-regulate XBP1s transcriptional activity, thereby increasing anti-oxidative genes expression. Moreover, knock down of XBP1s could significantly abolish the cell growth protection afforded by Tubastatin A. We hypothesize that Tubastatin A acts to increase XBP1s protein levels that are dependent on its HDAC6 deacetylase inhibition via a mechanism involving acetylation-mediated proteasomal degradation, providing novel mechanistic insight into the anti-oxidative effects of HDAC6 inhibition.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Acetilação/efeitos dos fármacos , Animais , Resistência a Medicamentos/fisiologia , Células HEK293 , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células PC12 , Ratos , Fatores de Transcrição de Fator Regulador X , Ativação Transcricional/efeitos dos fármacos , Proteína 1 de Ligação a X-Box
18.
Biochem Biophys Res Commun ; 443(2): 743-8, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333443

RESUMO

Inactivation of glycogen synthase kinase 3 (GSK3) has been shown to mediate axon growth during development and regeneration. Phosphorylation of GSK3 by the kinase Akt is well known to be the major mechanism by which GSK3 is inactivated. However, whether such regulatory mechanism of GSK3 inactivation is used in neurons to control axon growth has not been directly studied. Here by using GSK3 mutant mice, in which GSK3 is insensitive to Akt-mediated inactivation, we show that sensory axons regenerate normally in vitro and in vivo after peripheral axotomy. We also find that GSK3 in sensory neurons of the mutant mice is still inactivated in response to peripheral axotomy and such inactivation is required for sensory axon regeneration. Lastly, we provide evidence that GSK3 activity is negatively regulated by PI3K signaling in the mutant mice upon peripheral axotomy, and the PI3K-GSK3 pathway is functionally required for sensory axon regeneration. Together, these results indicate that in response to peripheral nerve injury GSK3 inactivation, regulated by an alternative mechanism independent of Akt-mediated phosphorylation, controls sensory axon regeneration.


Assuntos
Axônios/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Axônios/ultraestrutura , Ativação Enzimática , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Transdução de Sinais
19.
J Clin Invest ; 134(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015636

RESUMO

Current treatments for neurodegenerative diseases and neural injuries face major challenges, primarily due to the diminished regenerative capacity of neurons in the mammalian CNS as they mature. Here, we investigated the role of Ezh2, a histone methyltransferase, in regulating mammalian axon regeneration. We found that Ezh2 declined in the mouse nervous system during maturation but was upregulated in adult dorsal root ganglion neurons following peripheral nerve injury to facilitate spontaneous axon regeneration. In addition, overexpression of Ezh2 in retinal ganglion cells in the CNS promoted optic nerve regeneration via both histone methylation-dependent and -independent mechanisms. Further investigation revealed that Ezh2 fostered axon regeneration by orchestrating the transcriptional silencing of genes governing synaptic function and those inhibiting axon regeneration, while concurrently activating various factors that support axon regeneration. Notably, we demonstrated that GABA transporter 2, encoded by Slc6a13, acted downstream of Ezh2 to control axon regeneration. Overall, our study underscores the potential of modulating chromatin accessibility as a promising strategy for promoting CNS axon regeneration.


Assuntos
Axônios , Traumatismos do Nervo Óptico , Animais , Camundongos , Axônios/metabolismo , Gânglios Espinais/metabolismo , Mamíferos , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo
20.
Cell Rep Med ; 5(5): 101554, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729157

RESUMO

The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.


Assuntos
Axônios , Modelos Animais de Doenças , Glaucoma , Proteínas com Homeodomínio LIM , Regeneração Nervosa , Células Ganglionares da Retina , Fatores de Transcrição , Animais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Glaucoma/genética , Glaucoma/patologia , Glaucoma/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Axônios/metabolismo , Axônios/patologia , Camundongos , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Camundongos Endogâmicos C57BL , Sobrevivência Celular/genética , Semaforinas/metabolismo , Semaforinas/genética , N-Metilaspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa