Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(21): 8357-8366, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37202872

RESUMO

Ganoderma is a prize medicinal macrofungus with a broad range of pharmaceutical values. To date, various attempts have been made to cultivate Ganoderma to improve the production of secondary metabolites with pharmacological activity. Among the adopted techniques, protoplast preparation and regeneration are indispensable. However, the evaluation of protoplasts and regenerated cell walls usually relies on electron microscopy assays, which require time-consuming and destructive sample preparation and merely provide localized information in the selected area. In contrast, fluorescence assays enable sensitive real-time detection and imaging in vivo. They can also be applied to flow cytometry, providing a collective overview of every cell in a sample. However, for macrofungi such as Ganoderma, the fluorescence analysis of protoplasts and regenerated cell walls is difficult owing to the hindrance of the homologous fluorescent protein expression and the lack of an appropriate fluorescence marker. Herein, a specific plasma membrane probe, TAMRA perfluorocarbon nucleic acid probe (TPFN), is proposed for the nondestructive and quantitative fluorescence analysis of cell wall regeneration. Exploiting the perfluorocarbon membrane-anchoring chains, hydrophilic nucleic acid linker, and fluorescent dye TAMRA, the probe is proven to be selective, soluble, and stable, enabling rapid fluorescence detection of a protoplast sample free of transgenic expression or immune staining. Based on the TPFN and flow cytometry techniques, a quantitative approach is constructed to monitor the process of cell wall growth in a fast, quantitative, and high-throughout manner, and the obtained results are consistent with those of conventional electron microscopy. In principle, with slight modifications or integration, the proposed probe and approach can be adapted to the preparation of cell protoplasts, inspection of cell wall integrity under environmental stress, and programmable membrane engineering for cytobiology and physiology research.


Assuntos
Corantes Fluorescentes , Ganoderma , Parede Celular , Regeneração
2.
Crit Rev Biotechnol ; 42(5): 736-755, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34634988

RESUMO

Abnormal vasoconstriction, inflammation, and vascular remodeling can be promoted by angiotensin II (Ang II) in the renin-angiotensin system (RAS), leading to vascular dysfunction diseases such as hypertension and atherosclerosis. Researchers have recently focused on angiotensin I-converting enzyme inhibitory peptides (ACEIPs), that have desirable efficacy in vascular dysfunction therapy due to Ang II reduction by inhibiting ACE activity. Promising methods for the large-scale preparation of ACEIPs include selective enzymatic hydrolysis and microbial fermentation. Thus far, ACEIPs have been widely reported to be hydrolyzed from protein-rich sources, including animals, plants, and marine organisms, while many emerging microorganism-derived ACEIPs are theoretically biosynthesized through the nonribosomal peptide synthase (NRPS) pathway. Notably, vasodilatation, anti-inflammation, and vascular reconstruction reversal of ACEIPs are strongly correlated. However, the related molecular mechanisms underlying signal transduction regulation in vivo remain unclear. We provide a comprehensive update of the ACE-Ang II-G protein-coupled type 1 angiotensin receptor (AT1R) axis signaling and its functional significance for potential translation into therapeutic strategies, particularly targeting AT1R by ACEIPs, as well as specific related signaling pathways. Future studies are expected to verify the biosynthetic regulatory mechanism of ACEIPs via the NRPS pathway, the effect of gut microbiota metabolism on vascular dysfunction and rigorous studies of ACE-Ang II-AT1R signaling pathways mediated by ACEIPs in large animals and humans.


Assuntos
Peptidil Dipeptidase A , Sistema Renina-Angiotensina , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/farmacologia , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais
3.
Appl Environ Microbiol ; 85(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30902851

RESUMO

Crude glycerol is largely generated as the main by-product of the biodiesel industry and is unprofitable for industrial application without costly purification. The direct bioconversion of crude glycerol into 1,3-propanediol (1,3-PDO) by microorganisms is a promising alternative for effective and economic utilization. In this study, Klebsiella pneumoniae 2e was newly isolated for the conversion of crude glycerol into 1,3-PDO. Batch fermentation analysis confirmed that crude glycerol and its main impurities had slight impacts on the growth, key enzyme activity, and 1,3-PDO production of K. pneumoniae 2e. The 1,3-PDO yield from crude glycerol by K. pneumoniae 2e reached 0.64 mol 1,3-PDO/mol glycerol, which was higher than that by most reported 1,3-PDO-producing Klebsiella strains. Genomic profiling revealed that K. pneumoniae 2e possesses 30 genes involved in glycerol anaerobic metabolism and 1,3-PDO biosynthesis. Quantitative real-time PCR analysis of these genes showed that the majority of the genes encoding the key enzymes for glycerol metabolism and 1,3-PDO biosynthesis were significantly upregulated during culture in crude glycerol relative to that in pure glycerol. Further comparative genomic analysis revealed a novel glycerol uptake facilitator protein in K. pneumoniae 2e and a higher number of stress response proteins than in other Klebsiella strains. This work confirms the adaptability of a newly isolated 1,3-PDO-producing strain, K. pneumoniae 2e, to crude glycerol and provides insights into the molecular mechanisms involved in its crude glycerol tolerance, which is valuable for industrial 1,3-PDO production from crude glycerol.IMPORTANCE The rapid development of the biodiesel industry has led to tremendous crude glycerol generation. Due to the presence of complex impurities, crude glycerol has low value for industry without costly purification. Obtaining novel microorganisms capable of direct and efficient bioconversion of crude glycerol to value-added products has great economic potential for industrial application. In this work, we characterized a newly isolated strain, Klebsiella pneumoniae 2e, with the capacity to efficiently produce 1,3-propanediol (1,3-PDO) from crude glycerol and demonstrated its adaptation to crude glycerol. Our work provides insights into the molecular mechanisms of K. pneumoniae 2e adaptation to crude glycerol and the expression patterns of its genes involved in 1,3-PDO biosynthesis, which will contribute to the development of industrial 1,3-PDO production from crude glycerol.


Assuntos
Glicerol/metabolismo , Klebsiella pneumoniae/metabolismo , Propilenoglicóis/metabolismo
4.
Molecules ; 21(10)2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27775633

RESUMO

Triterpene acids (TAs) are the major bioactive constituents in the medicinal fungus Ganoderma lingzhi. However, fermentative production of TAs has not been optimized for commercial use, and whether the TAs isolated from G. lingzhi submerged culture mycelia possess antitumor activity needs to be further proven. In this study, enhanced TA yield and productivity were attained with G. lingzhi using response surface methodology. The interactions of three variables were studied using a Box-Benhnken design, namely initial pH, dissolved oxygen (DO) and fermentation temperature. The optimum conditions were an initial pH of 5.9, 20.0% DO and 28.6 °C. These conditions resulted in a TA yield of 308.1 mg/L in a 5-L stirred bioreactor. Furthermore, the optimized conditions were then successfully scaled up to a production scale of 200 L, and maximum TA production and productivity of 295.3 mg/L and 49.2 mg/L/day were achieved, which represented 80.9% and 111.5% increases, respectively, compared with the non-optimized conditions. Additionally, the triterpene acid extract (TAE) from G. lingzhi mycelia was found to be cytotoxic to the SMMC-7721 and SW620 cell lines in vitro, and the TAE exhibited dose-dependent antitumor activity against the solid tumor sarcoma 180 in vivo. Chemical analysis revealed that the key active triterpene compounds, ganoderic acid T and ganoderic acid Me, predominated in the extract.


Assuntos
Antineoplásicos/administração & dosagem , Reatores Biológicos/microbiologia , Ganoderma/crescimento & desenvolvimento , Sarcoma 180/tratamento farmacológico , Triterpenos/administração & dosagem , Triterpenos/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fermentação , Ganoderma/química , Humanos , Lanosterol/administração & dosagem , Lanosterol/análogos & derivados , Lanosterol/metabolismo , Lanosterol/farmacologia , Camundongos , Micélio/química , Micélio/crescimento & desenvolvimento , Triterpenos/química , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Bioresour Technol ; 373: 128705, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746212

RESUMO

Cordycepin is the key pharmacologically active compound of Cordyceps militaris, and various fermentation strategies have been developed to increase cordycepin production. This study aimed to investigate the effect of rotenone on cordycepin biosynthesis in submerged fermentation of C. militaris, and also to explore its possible induction mechanisms via multi-omics analysis. Adding 5 mg/L rotenone significantly increased the cordycepin production by 316.09 %, along with mycelial growth inhibition and cell wall destruction. Moreover, transcriptomic analysis and metabolomic analysis revealed the accumulation of cordycepin was promoted by alterations in energy metabolism and amino acid metabolism pathways. Finally, the integration analysis of the two omics confirmed rotenone altered the nucleotide metabolism pathway toward adenosine and up-regulated the cordycepin synthesis genes (cns1-3) to convert adenosine to cordycepin. This work reports, for the first time, rotenone could act as an effective inducer of cordycepin synthesis.


Assuntos
Cordyceps , Fermentação , Cordyceps/metabolismo , Rotenona/farmacologia , Rotenona/metabolismo , Multiômica , Desoxiadenosinas/metabolismo , Adenosina/metabolismo
6.
Methods Mol Biol ; 2594: 13-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264485

RESUMO

This protocol describes a method for verifying the specific transcription factor regulating glycerol dehydratase (GDH) expression in Klebsiella. DNA pull-down accompanied with mass spectrometry is used to screen and identify the transcription factor interacting with the promoter region of the key gene in Klebsiella. EMSA method is used to validate the specific binding of the transcription factor to the promoter region in vitro. In addition, the target DNA fragments are constructed by fusion PCR to prepare competent cells from Klebsiella for electrical transformation and further transformed to obtain key gene deletion strains to verify the transcription factor responsible for the target gene expression in Klebsiella.


Assuntos
Klebsiella , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , DNA , Transcrição Gênica
7.
Biotechnol Biofuels Bioprod ; 16(1): 175, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974275

RESUMO

BACKGROUND: The direct bioconversion of crude glycerol, a byproduct of biodiesel production, into 1,3-propanediol by microbial fermentation constitutes a remarkably promising value-added applications. However, the low activity of glycerol dehydratase, which is the key and rate-limiting enzyme in the 1,3-propanediol synthetic pathway, caused by crude glycerol impurities is one of the main factors affecting the 1,3-propanediol yield. Hence, the exploration of glycerol dehydratase resources suitable for crude glycerol bioconversion is required for the development of 1,3-propanediol-producing engineered strains. RESULTS: In this study, the novel glycerol dehydratase 2eGDHt, which has a tolerance against crude glycerol impurities from Klebsiella pneumoniae 2e, was characterized. The 2eGDHt exhibited the highest activity toward glycerol, with Km and Vm values of 3.42 mM and 58.15 nkat mg-1, respectively. The optimum pH and temperature for 2eGDHt were 7.0 and 37 °C, respectively. 2eGDHt displayed broader pH stability than other reported glycerol dehydratases. Its enzymatic activity was increased by Fe2+ and Tween-20, with 294% and 290% relative activities, respectively. The presence of various concentrations of the crude glycerol impurities, including NaCl, methanol, oleic acid, and linoleic acid, showed limited impact on the 2eGDHt activity. In addition, the enzyme activity was almost unaffected by the presence of an impurity mixture that mimicked the crude glycerol environment. Structural analyses revealed that 2eGDHt possesses more coil structures than reported glycerol dehydratases. Moreover, molecular dynamics simulations and site-directed mutagenesis analyses implied that the existence of unique Val744 from one of the increased coil regions played a key role in the tolerance characteristic by increasing the protein flexibility. CONCLUSIONS: This study provides insight into the mechanism for enzymatic action and the tolerance against crude glycerol impurities, of a novel glycerol dehydratase 2eGDHt, which is a promising glycerol dehydratase candidate for biotechnological conversion of crude glycerol into 1,3-PDO.

8.
Life (Basel) ; 13(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36983919

RESUMO

Cordyceps militaris is a famous traditional edible and medicinal fungus in Asia, and its fruiting body has rich medicinal value. The molecular mechanism of fruiting body development is still not well understood in C. militaris. In this study, phylogenetically analysis and protein domains prediction of the 14 putative chitinases were performed. The transcription level and enzyme activity of chitinase were significant increased during fruiting body development of C. militaris. Then, two chitinase genes (Chi1 and Chi4) were selected to construct gene silencing strain by RNA interference. When Chi1 and Chi4 genes were knockdown, the differentiation of the primordium was blocked, and the number of fruiting body was significantly decreased approximately by 50% compared to wild-type (WT) strain. The length of the single mature fruiting body was shortened by 27% and 38% in Chi1- and Chi4-silenced strains, respectively. In addition, the chitin content and cell wall thickness were significantly increased in Chi1- and Chi4-silenced strains. These results provide new insights into the biological functions of chitinase in fruiting body development of C. militaris.

9.
Int J Biol Macromol ; 253(Pt 5): 127271, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804895

RESUMO

Rice starch nanocrystals (SNC) and acetylated rice starch nanocrystals (ASNC) with three different substitution degrees (DS) for 0.22 (ASNCa), 0.56 (ASNCb), and 0.83 (ASNCc), respectively, were synthesized. Starch nanocrystals (SNC, ASNCa, ASNCb and ASNCc) with varying concentrations (0-25 %) were used in the production of composite rice starch-based films plasticized with glycerol using the solvent casting technique. Films were compared concerning their morphology, moisture content and solubility, transmittance, tensile strength, elongation at break. The SNC and ASNC content and acetylated DS had a significant effect (p ≤ 0.05) on all the properties investigated when compared to the control film. The addition of ASNC resulted in less hydrophilic films and UV light barrier properties, and the addition of SNC and ASNC increased the rigidity of starch film. There was an increase of 156.7 % in tensile strength for 10 % ASNCc composite films and a reduction of 68.1 % in water vapor permeability for 20 % ASNCc composite films. The rice starch/ASNCb nanocomposite films with the addition of 5 % and 10 % ASNCb exhibited a compact, smooth, and flat surface structure. Therefore, these results showed that ASNC significantly improved the mechanical properties, surface morphology and thermal stability of the films.


Assuntos
Nanopartículas , Oryza , Oryza/química , Amido/química , Nanopartículas/química , Solubilidade , Permeabilidade , Resistência à Tração
10.
Commun Biol ; 6(1): 1, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596887

RESUMO

Ganoderic acids (GAs) are well recognized as important pharmacological components of the medicinal species belonging to the basidiomycete genus Ganoderma. However, transcription factors directly regulating the expression of GA biosynthesis genes remain poorly understood. Here, the genome of Ganoderma lingzhi is de novo sequenced. Using DNA affinity purification sequencing, we identify putative targets of the transcription factor sterol regulatory element-binding protein (SREBP), including the genes of triterpenoid synthesis and lipid metabolism. Interactions between SREBP and the targets are verified by electrophoretic mobility gel shift assay. RNA-seq shows that SREBP targets, mevalonate kinase and 3-hydroxy-3-methylglutaryl coenzyme A synthetase in mevalonate pathway, sterol isomerase and lanosterol 14-demethylase in ergosterol biosynthesis, are significantly upregulated in the SREBP overexpression (OE::SREBP) strain. In addition, 3 targets involved in glycerophospholipid/glycerolipid metabolism are upregulated. Then, the contents of mevalonic acid, lanosterol, ergosterol and 13 different GAs as well as a variety of lipids are significantly increased in this strain. Furthermore, the effects of SREBP overexpression on triterpenoid and lipid metabolisms are recovered when OE::SREBP strain are treated with exogenous fatostatin, a specific inhibitor of SREBP. Taken together, our genome-wide study clarify the role of SREBP in triterpenoid and lipid metabolisms of G. lingzhi.


Assuntos
Ganoderma , Triterpenos , Lanosterol/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metabolismo dos Lipídeos , Estudo de Associação Genômica Ampla , Triterpenos/farmacologia , Triterpenos/metabolismo , Ganoderma/genética , Ganoderma/química , Ganoderma/metabolismo , Esteróis/metabolismo , Ergosterol/metabolismo
11.
Molecules ; 17(7): 8136-46, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22772809

RESUMO

Native rice starch lacks the versatility necessary to function adequately under rigorous industrial processing, so modified starches are needed to meet the functional properties required in food products. This work investigated the impact of enzymatic hydrolysis and cross-linking composite modification on the properties of rice starches. Rice starch was cross-linked with epichlorohydrin (EPI) with different concentrations (0.5%, 0.7%, 0.9% w/w, on a dry starch basis), affording cross-linked rice starches with the three different levels of cross-linking that were named R1, R2, and R3, respectively. The cross-linked rice starches were hydrolyzed by α-amylase and native, hydrolyzed, and hydrolyzed cross-linked rice starches were comparatively studied. It was found that hydrolyzed cross-linked rice starches showed a lower the degree of amylase hydrolysis compared with hydrolyzed rice starch. The higher the degree of cross-linking, the higher the capacity to resist enzyme hydrolysis. Hydrolyzed cross-linked rice starches further increased the adsorptive capacities of starches for liquids and decreased the trend of retrogradation, and it also strengthened the capacity to resist shear compared to native and hydrolyzed rice starches.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Oryza/química , Amido/metabolismo , alfa-Amilases/metabolismo , Adsorção/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Epicloroidrina/farmacologia , Hidrólise/efeitos dos fármacos , Reologia/efeitos dos fármacos , Resistência ao Cisalhamento/efeitos dos fármacos , Temperatura
12.
Molecules ; 17(7): 8147-58, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22772810

RESUMO

The effects of black tea polyphenol extract (BTPE) on the retrogradation of starches from different plant sources were studied using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). DSC analysis shows that the gelatinization temperature of maize starch and starches from different rice varieties increased with increasing BTPE level. After storage at 4 °C, BTPE at a concentration of 15% markedly retarded the retrogradation of maize starch and starches from different rice varieties. Native maize starch and starches from different rice varieties showed typical A-type X-ray diffraction patterns, while native potato starch showed a typical B-type X-ray diffraction pattern. Adding BTPE significantly affected the crystalline region and intensities of X-ray diffraction peaks of maize and rice starch granules. It is concluded that adding BTPE markedly inhibits the retrogradation of maize starch and starches from different rice varieties, but has no significant influence on the gelatinization and retrogradation characteristics of potato starch.


Assuntos
Extratos Vegetais/farmacologia , Plantas/química , Polifenóis/farmacologia , Amido/química , Chá/química , Amilose/análise , Géis/química , Umidade , Oryza/química , Solanum tuberosum/química , Temperatura , Difração de Raios X , Zea mays/química
13.
Molecules ; 17(11): 12575-86, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23095899

RESUMO

Enhanced ganoderic acid Me (GA-Me, an important anti-tumor triterpene) yield was attained with the medicinal fungus Ganoderma lucidum using response surface methodology (RSM). Interactions were studied with three variables, viz. glucose, peptone and culture time using a Central Composite Design (CCD). The CCD contains a total of 20 experiments with the first 14 experiments organized in a fractional factorial design, with the experimental trails from 15 to 20 involving the replications of the central points. A polynomial model, describing the relationships between the yield of GA-Me and the three factors in a second-order equation, was developed. The model predicted the maximum GA-Me yield of 11.9 mg·L−1 for glucose, peptone, culture time values of 44.4 g·L−1, 5.0 g·L−1, 437.1 h, respectively, and a maximum GA-Me yield of 12.4 mg·L−1 was obtained in the validation experiment, which represented a 129.6% increase in titre compared to that of the non-optimized conditions. In addition, 11.4 mg·L−1 of GA-Me was obtained in a 30-L agitated fermenter under the optimized conditions, suggesting the submerged culture conditions optimized in the present study were also suitable for GA-Me production on a large scale.


Assuntos
Fermentação , Reishi/metabolismo , Triterpenos/metabolismo , Algoritmos , Análise de Variância , Reatores Biológicos , Meios de Cultura/química , Técnicas de Cultura , Medicamentos de Ervas Chinesas/metabolismo , Modelos Biológicos , Análise de Regressão , Reishi/crescimento & desenvolvimento
14.
Molecules ; 17(9): 10946-57, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22971580

RESUMO

Rice starch was cross-linked with epichlorohydrin (0.3%, w/w, on a dry starch basis) and oxidized with sodium hypochlorite (2.5% w/w), respectively. Two dual-modified rice starch samples (oxidized cross-linked rice starch and cross-linked oxidized rice starch) were obtained by the oxidation of cross-linked rice starch and the cross-linking of oxidized rice starch at the same level of reagents. The physicochemical properties of native rice starch, cross-linked rice starch and oxidized rice starch were also studied parallel with those of the two dual-modified rice starch samples using rapid visco analysis (RVA), differential scanning calorimetry (DSC), dynamic rheometry and scanning electron microscopy (SEM). It was found that the levels of cross-linking and oxidation used in this study did not cause any significant changes in the morphology of rice starch granules. Cross-linked oxidized starch showed lower swelling power (SP) and solubility, and higher paste clarity in comparison with native starch. Cross-linked oxidized rice starch also had the lowest tendency of retrogradation and highest ability to resistant to shear compared with native, cross-linked, oxidized and oxidized cross-linked rice starches. These results suggest that the undesirable properties in native, cross-linked and oxidized rice starch samples could be overcome through dual-modification.


Assuntos
Oryza/química , Amido/química , Varredura Diferencial de Calorimetria , Epicloroidrina/química , Oxirredução , Solubilidade
15.
Mycology ; 13(3): 212-222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938082

RESUMO

3,4-Dihydroxy-2,2-dimethyl-chroman derivatives have diverse physiological properties. A polyketone (3S,4S)-3,4-Dihydroxy-6-methoxy-2,2-dimethylchromom (3S,4S-DMD) with antibacterial activity was isolated from the solid culture of rare edible fungus Panus lecomtei. However, the yield of 3S,4S-DMD in solid culture of P. lecomtei is very low and the production period are too long. In this work, efficient accumulation of 3S,4S-DMD in P. lecomtei by submerged fermentation is studied. The key fermentation factors of P. lecomtei for 3S,4S-DMD production were optimised by single-factor experiment successively, and then a Box-Behnken design (BBD) experiment was carried out to further enhance 3S,4S-DMD production. A maximum 3S,4S-DMD yield of 196.3 mg/L was obtained at 25.78 g/L glucose, 1.67 g/L MgSO4 · 7H2O, 40°C and 197 r/min, respectively, which increased by 1.3-fold in comparison with that in the non-optimised fermentation conditions. Furthermore, an enhanced yield of 3S,4S-DMD (261.6 mg/L) was obtained in 5-L agitated fermenter. The 3S,4S-DMD productivity in flask and fermenter reached to 7.26 and 8.07 mg/g per day, respectively, which considerably increased by over 121-fold in comparison with that in the solid fermentation (0.06 mg/g per day). This study presents a potential method for the production of 3S,4S-DMD by submerged fermentation.

16.
Int J Biol Macromol ; 217: 88-95, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35817234

RESUMO

Native broken-rice starch was used to create starch nanoparticles (StNPs) with particle sizes ranging from 100 nm to 800 nm. The fluorescent isothiocyanate poly-l-lysine StNPs (FITC-PLL-StNPs) were created in two steps. First, the StNPs were electrostatically modified by poly-l-lysine (PLL) molecules rich in amino acids. Second, fluorescein isothiocyanate reacted with some amino groups on PLL molecules (FITC). Fluorescence spectrophotometry was used to determine the degree of substitution (DS) and fluorescent properties of fluorescent starches. The study found that FITC-PLL-StNP-200 has higher fluorescence stability, more phagocytic cells, and a better and clearer fluorescence detecting effect than FITC-PLL-St, FITC-PLL-StNP-100, FITC-PLL-StNP-400, and FITC-PLL-StNP-800. The biological evaluation results showed that FITC-PLL-StNP-200 did not affect the viability of HeLa cells at the lysosome labeling concentration. These findings suggest that FITC-PLL-StNP-200 has strong and stable fluorescence, indicating that FITC-PLL-StNP-200 can be used as a fluorescent probe and lysosome marker in a variety of applications, particularly in biomedicine.


Assuntos
Nanopartículas , Oryza , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Células HeLa , Humanos , Nanopartículas/química , Polilisina/química , Amido/química
17.
Food Funct ; 13(17): 9032-9048, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35943028

RESUMO

Oxidative stress causes chronic inflammation, and mediates various diseases. The discovery of antioxidants from natural sources is important to research. Here we identified a novel antioxidant peptide (GLP4) from Ganoderma lingzhi mycelium and investigated its antioxidant type and potential protective mechanisms. Through free radical scavenging assay, active site shielding validation, superoxide dismutase (SOD) activity assay, and lipid peroxidation assay, we demonstrated that GLP4 was a novel protective agent with both direct and indirect antioxidant activities. GLP4 could directly enter human umbilical vein endothelial cells (HUVECs) as an exogenous substance. Meanwhile, GLP4 promoted the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and activated the Nrf2/antioxidant response element (ARE) signaling pathway, exhibiting antioxidant and anti-apoptotic cytoprotective effects on hydrogen peroxide (H2O2)-induced HUVECs. Pull-down experiments of GLP4 target proteins, bioinformatics analysis and molecular docking further revealed that GLP4 mediated Nrf2 activation through binding to phosphoglycerate mutase 5 (PGAM5). The results suggested that GLP4 is a novel peptide with dual antioxidant activity and has promising potential as a protective agent in preventing oxidative stress-related diseases.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ganoderma , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/metabolismo , Simulação de Acoplamento Molecular , Micélio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
18.
Biotechnol Adv ; 53: 107841, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610353

RESUMO

Metabolic energy (ME) homeostasis is essential for the survival and proper functioning of microbial cell factories. However, it is often disrupted during bioproduction because of inefficient ME supply and excessive ME consumption. In this review, we propose strategies, including reinforcement of the capacity of ME-harvesting systems in autotrophic microorganisms; enhancement of the efficiency of ME-supplying pathways in heterotrophic microorganisms; and reduction of unessential ME consumption by microbial cells, to address these issues. This review highlights the potential of biotechnology in the engineering of microbial ME homeostasis and provides guidance for the higher efficient bioproduction of microbial cell factories.


Assuntos
Engenharia Metabólica , Biologia Sintética , Biotecnologia , Homeostase , Redes e Vias Metabólicas
19.
Biotechnol Biofuels ; 14(1): 135, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118970

RESUMO

BACKGROUND: Pretreatment is a critical step required for efficient conversion of woody biomass into biofuels and platform chemicals. Fungal pretreatment is regarded as one of the most promising technology for woody biomass conversion but remains challenging for industrial application. The exploration of potential fungus strain with high efficient delignification and less processing time for woody biomass pretreatment will be valuable for development of biorefinery industry. Here, a newly isolated white-rot basidiomycete Peniophora incarnate T-7 was employed for poplar wood pretreatment. RESULTS: The chemical component analysis showed that cellulose, hemicellulose and lignin from poplar wood declined by 16%, 48% and 70%, respectively, after 7 days submerged fermentation by P. incarnate T-7. Enzymatic saccharification analysis revealed that the maximum yields of glucose and xylose from 7 days of P. incarnate T-7 treated poplar wood reached 33.4% and 27.6%, respectively, both of which were enhanced by sevenfold relative to the untreated group. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) characterization confirmed that lignocellulosic structure of poplar wood was largely broken by P. incarnate T-7, including delignification and de-crystalline of cellulose. Meanwhile, lignin component of poplar wood was selectively degraded by P. incarnate T-7, and G-type unit of lignin was preferentially attacked by the strain. Furthermore, quantitative proteomic analysis revealed that a considerable amount of lignocellulolytic enzymes were detected in the secretory proteins of P. incarnate T-7, especially with high abundance of lignin-degrading enzymes and hemicellulases. Combination of quantitative proteomic with transcriptomic analysis results showed that most of those lignocellulolytic enzymes were highly upregulated on poplar wood substrate compared to glucose substrate. CONCLUSIONS: This study showed that P. incarnate T-7 could selectively delignify poplar wood by submerged fermentation with short time of 7 days, which greatly improved its enzymatic saccharification efficiency. Our results suggested that P. incarnate T-7 might be a promising candidate for industrial woody biomass pretreatment.

20.
Biotechnol Biofuels ; 14(1): 189, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563244

RESUMO

BACKGROUND: Lignin is a complex aromatic heteropolymer comprising 15-30% dry weight of the lignocellulose. The complex structural characteristic of lignin renders it difficult for value-added utilization. Exploring efficient lignin-degrading microorganisms and investigating their lignin-degradation mechanisms would be beneficial for promoting lignin valorization. In this study, a newly isolated white-rot basidiomycete, Trametes hirsuta X-13, with capacity to utilize alkaline lignin as the sole substrate was investigated. RESULTS: The analysis of the fermentation properties of T. hirsuta X-13 using alkaline lignin as the sole substrate, including the mycelial growth, activities of ligninolytic enzymes and the rates of lignin degradation and decolorization confirmed its great ligninolysis capacity. The maximum lignin degradation rate reached 39.8% after 11 days of T. hirsuta X-13 treatment, which was higher than that of reported fungi under the same condition. Fourier transform infrared spectrometry (FTIR), gas chromatography-mass spectrometry (GC-MS) scanning electron micrographs (SEM), two-dimensional heteronuclear single quantum coherence NMR analysis (2D-HSQC NMR) collaborated with pyrolysis gas chromatography-mass spectrometry (py-GC/MS) analyses proved that lignin structure was severely deconstructed along with amounts of monomer aromatics generated. Furthermore, according to those chemical analysis, in addition to canonical Cα-Cß breakage, the cleavage of lignin interunit linkages of ß-ß might also occur by T. hirsuta X-13. CONCLUSIONS: This study characterized a newly isolated white-rot basidiomycete T. hirsuta X-13 with impressive alkaline lignin degradation ability and provided mechanistic insight into its ligninolysis mechanism, which will be valuable for the development of lignin valorization strategies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa