Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 3(1): 302-307, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019446

RESUMO

Wound dressings are an important element in promoting the healing of wounds. Electrospun fibrous materials have a highly porous structure and controllable antibacterial activity and are therefore popular as potential wound dressings. However, electrospun fibrous wound dressings are usually conveniently packaged for immediate use but cannot accommodate irregularly shaped wounds, and their misuse runs the risk of causing a secondary injury to the wound. To overcome these issues, in situ electrospun zein/thyme essential oil (TEO) nanofibrous membranes are proposed as a potential type of wound dressing and applied for wound management through an in situ electrospinning process, which uses a portable electrospinning device. The as-spun zein/TEO membranes show high gas permeability up to 154 ± 20.9 m2/s and superhydrophilicity with a 0° contact angle. With the addition of TEO, good antibacterial effects are also imparted onto the membrane to prevent infection. Moreover, the in situ electrospinning can directly deposit the zein/TEO membranes onto the site of the wound to accommodate the shape of the wound with increased convenience and perceived comfort. Experiments carried out on mice suggest that the in situ electrospun zein/TEO membrane greatly promotes the wound healing process within 11 days. The study results, therefore, suggest that wound dressings in the form of in situ electrospun zein/TEO membranes can be used to facilitate wound healing.

2.
Colloids Surf B Biointerfaces ; 188: 110766, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31923774

RESUMO

Antibacterial dressings are an increasingly important tool for the prevention and management of wound infections, particularly in light of concerns surrounding conventional drug-resistant antibiotics. Handheld electrospinning devices provide opportunities for the rapid application of antibacterial dressing materials to wounds, but spinning formulations need to be compatible with live biological surfaces. We report the development of a new antibacterial formulation compatible with handheld electrospinning, and its manufacture directly on a wound site. Nanofibrous dressing mats were produced from polyvinyl pyrrolidone (PVP) containing isatis root (Indigowoad root or Ban-Lan-Gen), a traditional Chinese medicine, commonly used for the treatment of infectious disease. The resulting wound dressing mats of PVP/isatis root exhibited well-defined fibrous structures and excellent surface wetting, and permeability characteristics. The presence of isatis root conferred antibacterial activity against gram negative and gram positive strains. Moreover, in a Kunming mouse skin injury model, direct electrospinning of PVP/isatis root formulations on to wound sites produced near complete wound closure after 11 days and epidermal repair in histological studies.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Isatis/química , Povidona/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Raízes de Plantas/química , Povidona/química , Propriedades de Superfície
3.
Polymers (Basel) ; 11(5)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052529

RESUMO

Paper-based relics, which are an important part of cultural heritage worldwide, are at risk of imminent damage from various environmental sources. To protect them, the atmospheric pressure plasma polymerization of hexamethyldisiloxane (HMDSO) precursor has been explored on paper-based relics in situ. The macro and micro images taken during this process suggest that the in situ plasma treatment does not change the macro morphology and the micro structure of the treated paper-based relic samples. On the other hand, plasma treatment causes the polymerization of the HMDSO which then produces nanoparticles deposited onto the paper-based relics. These nanoparticles provide good waterproof properties with large static water contact angles and smaller rolling angles, which protect the paper-based relics from water penetration. Moreover, since the nanoparticles are deposited onto the fibers, waterproof fastness is ensured. Also, the examined mechanical properties of the treated and untreated paper-based relics indicate that the atmospheric pressure plasma treatment does not affect the strength of the paper very much. The results in this study show that atmospheric pressure plasma treatment with the use of HMDSO precursor is a good method to preserve paper-based relics.

4.
Nanoscale Res Lett ; 13(1): 309, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30284048

RESUMO

For effective application of electrospinning and electrospun fibrous meshes in wound dressing, we have in situ electrospun poly(vinyl pyrrolidone)/iodine (PVP/I), PVP/poly(vinyl pyrrolidone)-iodine (PVPI) complex, and poly(vinyl butyral) (PVB)/PVPI solutions into fibrous membranes by a handheld electrospinning apparatus. The morphologies of the electrospun fibers were examined by SEM, and the hydrophobicity, gas permeability, and antibacterial properties of the as-spun meshes were also investigated. The flexibility and feasibility of in situ electrospinning PVP/I, PVP/PVPI, and PVB/PVPI membranes, as well as the excellent gas permeabilities and antibacterial properties of the as-spun meshes, promised their potential applications in wound healing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa