Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003311

RESUMO

Brassinosteroids (BRs), the sixth major phytohormone, can regulate plant salt tolerance. Many studies have been conducted to investigate the effects of BRs on plant salt tolerance, generating a large amount of research data. However, a meta-analysis on regulating plant salt tolerance by BRs has not been reported. Therefore, this study conducted a meta-analysis of 132 studies to elucidate the most critical physiological mechanisms by which BRs regulate salt tolerance in plants from a higher dimension and analyze the best ways to apply BRs. The results showed that exogenous BRs significantly increased germination, plant height, root length, and biomass (total dry weight was the largest) of plants under salt stress. There was no significant difference between seed soaking and foliar spraying. However, the medium method (germination stage) and stem application (seedling stage) may be more effective in improving plant salt tolerance. BRs only inhibit germination in Solanaceae. BRs (2 µM), seed soaking for 12 h, and simultaneous treatment with salt stress had the highest germination rate. At the seedling stage, the activity of Brassinolide (C28H48O6) was higher than that of Homobrassinolide (C29H50O6), and post-treatment, BRs (0.02 µM) was the best solution. BRs are unsuitable for use in the germination stage when Sodium chloride is below 100 mM, and the effect is also weakest in the seedling stage. Exogenous BRs promoted photosynthesis, and antioxidant enzyme activity increased the accumulation of osmoregulatory and antioxidant substances and reduced the content of harmful substances and Na+, thus reducing cell damage and improving plant salt tolerance. BRs induced the most soluble protein, chlorophyll a, stomatal conductance, net photosynthetic rate, Glutathione peroxidase, and root-Ca2+, with BRs causing Ca2+ signals in roots probably constituting the most important reason for improving salt tolerance. BRs first promoted the accumulation of Ca2+ in roots, which increased the content of the above vital substances and enzyme activities through the Ca2+ signaling pathway, improving plant salt tolerance.


Assuntos
Antioxidantes , Brassinosteroides , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Tolerância ao Sal , Clorofila A/metabolismo , Plântula/metabolismo , Raízes de Plantas
2.
Int J Biol Macromol ; 253(Pt 8): 127582, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866580

RESUMO

Quinoa is a crop with high nutritional value and strong stress resistance. AP2/ERF transcription factors play a key role in plant growth and development. In this study, 148 AP2/ERF genes were identified in quinoa, which were divided into 5 subfamilies, including ERF, AP2, DREB, RAV and Soloist. The results showed that the number of introns ranged from 0 to 11, and the Motif 1-Motif 4 was highly conserved in most CqAP2/ERF proteins. The 148 CqAP2/ERF genes were distributed on 19 chromosomes. There were 93 pairs of duplicating genes in this family, and gene duplication played a critical role in the expansion of this family. Protein-protein interaction indicated that the proteins in CqAP2/ERF subfamily exhibited complex interactions, and GO enrichment analysis indicated that 148 CqAP2/ERF proteins were involved in transcription factor activity. In addition, CqAP2/ERF gene contains a large number of elements related to hormones in promoter region (IAA, GA, SA, ABA and MeJA) and stresses (salt, drought, low temperature and anaerobic induction). Transcriptome analysis under drought stress indicated that most of the CqAP2/ERF genes were responsive to drought stress, and subcellular localization indicated that CqERF24 was location in the nucleus, qRT-PCR results also showed that most of the genes such as CqERF15, CqERF24, CqDREB03, CqDREB14, CqDREB37 and CqDREB43 also responded to drought stress in roots and leaves. Overexpression of CqERF24 in Arabidopsis thaliana enhanced drought resistance by increasing antioxidant enzyme activity and activation-related stress genes, and the gene is sensitive to ABA, while silencing CqERF24 in quinoa decreased drought tolerance. In addition, overexpression of CqERF24 in quinoa calli enhanced resistance to mannitol. These results lay a solid foundation for further study on the role of AP2/ERF family genes in quinoa under drought stress.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Secas , Duplicação Gênica , Perfilação da Expressão Gênica/métodos , Íntrons , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa