Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(14): 5633-5639, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38529943

RESUMO

Materials exhibiting strong absorption in the NIR-II region are appealing for photothermal conversion-based imaging, diagnosis, and therapy, due to better thermal effect and decreased absorption of water in such a region. 3,3',5,5'-Tetramethylbenzidine (TMB), the typical substrate in ELISA, has been explored in photothermal immunoassay, since its oxidation product (oxTMB) is photothermally active in the NIR region. However, its absorption at 1064 nm (the most often used laser wavelength in photothermal studies) is not appreciable, thus limiting the assay sensitivity. Here, we proposed a derivative of TMB (3,3'-dimethoxy-5,5'-dimethylbenzidine, 2-OCH3) bearing higher NIR-II absorption for 1064 nm-excited photothermal immunoassay. Since electron-donating groups can help decrease the energy gap of molecules (here -CH3 → -OCH3), the oxidation product of 2-OCH3 exhibited substantially red-shifted absorption as compared with oxTMB, leading to a more than twofold higher absorption coefficient at 1064 nm. As a result, 2-OCH3 showed enhanced sensitivity over TMB in a photothermal immunoassay (PTIA), yielding a limit of detection (LOD) of 0.1 ng/mL for prostate-specific antigen (PSA). The feasibility of 2-OCH3-based PTIA for diagnosis was further validated by analyzing PSA in 61 serum samples. Considering its superior photothermal performance, 2-OCH3 can be explored for a broad range of photothermal applications.


Assuntos
Nanopartículas , Antígeno Prostático Específico , Humanos , Masculino , Antígeno Prostático Específico/análise , Benzidinas/química , Luz , Imunoensaio/métodos , Nanopartículas/química
2.
Luminescence ; 37(5): 810-821, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35289053

RESUMO

The interaction between myricetin and dihydromyricetin with trypsin, α-chymotrypsin and lysozyme was investigated using multispectral and molecular docking methods. The results of fluorescence quenching revealed that myricetin and dihydromyricetin could quench the intrinsic fluorescence of three different proteinases through a static quenching procedure. The binding constant and number of binding sites at different temperatures were measured. The thermodynamic parameters obtained at different temperatures showed van der Waals interactions and hydrogen bonds played the main roles in the interaction of myricetin with trypsin and lysozyme, hydrophobic force was dominant both in myricetin with α-chymotrypsin interaction and dihydromyricetin with trypsin and lysozyme interaction, as for the electrostatic forces, it was mainly the driving force in dihydromyricetin binding to α-chymotrypsin. There was non-radiative energy transfer between three proteinases and myricetin or dihydromyricetin with high probability. The microenvironment of trypsin, α-chymotrypsin and lysozyme is changed. The docking studies revealed that myricetin and dihydromyricetin entered the hydrophobic cavity of three proteinases and formed hydrogen bonds. The binding affinity of myricetin or dihydromyricetin is different with the trypsin, α-chymotrypsin and lysozyme due to the different molecular structure.


Assuntos
Muramidase , Sítios de Ligação , Quimotripsina , Flavonoides , Flavonóis , Simulação de Acoplamento Molecular , Muramidase/química , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica , Tripsina/química , Tripsina/metabolismo
3.
J Sci Food Agric ; 102(11): 4462-4472, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35092622

RESUMO

BACKGROUNDS: In the present study, a glycosylated soybean protein with glucose was prepared after pH treatment under different conditions (5.0, 6.0 7.0, 8.0, 9.0) and the conformation and emulsifying properties of soybean protein isolate (SPI) and soybean protein isolate-glucose (SPI-G) were investigated. RESULTS: The degree of grafting (37.11%) and browning (39.2%) of SPI-G conjugates were obtained at pH 9.0 (P < 0.05). The results of analysis of polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy and Endogenous fluorescence spectroscopy showed that the Maillard reaction between the SPI and glucose occurred and the natural rigid structure of test proteins was stretched and became looser, and thus the tertiary conformation was unfolding. Furthermore, the particle size of the all of samples was reduced under different pH conditions, indicating that pH treatment can increase the flexibility of SPI molecules. The proteins exhibited the best surface hydrophobicity, thermal stability and emulsifying activity (EA) of modified products when subjected to a pH treatment of 9.0, whereas they afforded the best emulsion stability (ES) at pH 8.0. There was a good correlation between the molecular flexibility and emulsifying properties of SPI-G [0.963 (F:EA) and 0.879 (F:ES)] (P < 0.05). CONCLUSION: The present study shows that the structural and emulsification characteristics of natural SPI and SPI-G conjugates have been significantly enhanced via pH treatment and these results provide a theoretical guidance for the application of glycosylated SPI in the food industry. © 2022 Society of Chemical Industry.


Assuntos
Glucose , Proteínas de Soja , Emulsões/química , Glucose/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Reação de Maillard , Proteínas de Soja/química
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120982, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35139470

RESUMO

The interaction mechanisms of nimodipine with pepsin, trypsin, α-chymotrypsin, lysozyme and human serum albumin were investigated by multispectral and molecular docking methods. Vitamin C and naringin were the main active components of grapefruit juice, and nimodipine was the typical drug that interacts with this juice. Fluorescence spectroscopy was used to study the interaction of nimodipine with five proteinases (pepsin, trypsin, α-chymotrypsin, lysozyme and human serum albumin) and the effects of vitamin C and naringin on these interactions. The fluorescence quenching results showed that nimodipine can quench the intrinsic fluorescence of these five proteinases by a static quenching procedure. Nimodipine binds to pepsin and α-chymotrypsin, through hydrogen bonding and van der Waals forces, whereas it binds to trypsin, lysozyme and human serum albumin mainly by hydrophobic interactions. The microenvironment of the five proteinases changed. The probability of nonradiative energy transfer between the five proteinases and nimodipine was high. Both vitamin C and naringin reduced the binding constant of nimodipine to the four proteinases (except α-chymotrypsin) and might increase the concentration of free nimodipine. Thus, vitamin C or naringin in fruits or foods could increase the blood concentration of free nimodipine and perhaps a reduction in nimodipine dose was needed.


Assuntos
Ácido Ascórbico , Nimodipina , Sítios de Ligação , Flavanonas , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa