Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2312218, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716754

RESUMO

Room-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices. Remarkably, the phosphorescence lifetime of the thermally enhanced CND exhibits a twofold enhancement, increasing from 326 to 753 ms, while the phosphorescence intensity experienced a tenfold enhancement, increasing from 25 to 245 as the temperature increased to 373 K. Rigid fiber matrices can effectively suppress the non-radiative transition rate of triplet excitons, while high temperatures can desorb oxygen adsorbed on the surface of the CND, disrupting the interaction between the CND and oxygen. Consequently, a thermally enhanced phosphorescence is obtained. In addition, benefiting from the thermally enhanced phosphorescence property of CND, a warning indicator with an anti-counterfeiting function for monitoring cold-chain logistics is demonstrated based on CND.

2.
Nano Lett ; 23(24): 11669-11677, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38060996

RESUMO

Supramolecular aggregation has provided the archetype concept to understand the variants in an emerging systems property. Herein, we have achieved the supramolecular assembly of carbon nanodots (CDs) for the first time and employ supramolecular aggregation to understand their alteration in photophysical properties. In detail, we have employed the CDs as a block to construct the supramolecular assembly of aggregates in the CDs' antisolvent of ethanol. The CD-based aggregates exhibit complex and organized morphologies with another long-wavelength excitation-dependent emission band. The experimental results and density functional theoretical calculations reveal that the supramolecular assembly of CDs can decrease the energy gap between the ground and excited states, contributing to the new long-wavelength excitation-dependent emission. The supramolecular aggregation can be employed as one universal strategy to manipulate and understand the luminescence of CDs. These findings cast new light to build the emerging systems and understand the light emission of CDs through supramolecular chemistry.

3.
Nano Lett ; 23(24): 11755-11762, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091579

RESUMO

The issues of fruit waste and safety resulting from rot have spurred a demand for improved packaging systems. Herein, we present highly antibacterial and antioxidative carbon nanodot/silk fibroin (CD/SF) films for fruit preservation. The films are composed of CDs and SF together with a small amount of glycerol via hydrogen bonding, exhibiting outstanding biosafety, transparency, and stretchability. The films effectively integrate key functionalities (atmosphere control, resistance to food-borne pathogens, and antioxidation properties) and can be manufactured in large sizes (about 20 × 30 cm), boasting a transmission rate of 13 183 cm3/m2·day for oxygen and 2860 g/m2·day for water vapor, favoring the preservation of fresh fruits. A convenient dip-coating method enables in situ fabrication of films with a thickness of approximately 14 µm directly on the fruits' surface providing comprehensive protection. Importantly, the films are washable and biodegradable. This work presents a promising technology to produce multifunctional and eco-friendly antibacterial packaging systems.


Assuntos
Fibroínas , Frutas/microbiologia , Antioxidantes/farmacologia , Antibacterianos/farmacologia
4.
Small ; 19(31): e2302504, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37282771

RESUMO

Phosphorescent materials as block elements to build artwork incorporating the time and emission, enable them with spectacular lighting effects. In this work, enhanced phosphorescence of carbon nanodots (CNDs) is demonstrated via double confinement strategy, which silica and epoxy resin are used as the first and the second order confinement layer. The multi-confined CNDs show an enhanced phosphorescence quantum yield up to 16.4%, with enduring emission lifetime up to 1.44 s. Delicately, the plasticity of the epoxy resin enables them easily to be designed for 3D artworks with long emission lifetimes in different shapes. The efficient and eco-friendly phosphorescent CNDs may arouse intense interest both in the academic community and markets.

5.
Small ; 19(31): e2205916, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36494158

RESUMO

Room-temperature phosphorescence has received much attention owing to its potential applications in information encryption and bioelectronics. However, the preparation of full-color single-component-derived phosphorescent materials remains a challenge. Herein, a facile in situ confining strategy is proposed to achieve full-color phosphorescent carbon dots (CDs) through rapid microwave-assisted carbonization of citric acid in NaOH. By tuning the mass ratio of citric acid and NaOH, the obtained CDs exhibit tunable phosphorescence wavelengths ranging from 483 to 635 nm and alterable lifetimes from 58 to 389 ms with a synthesis yield of up to 83.7% (>30 g per synthesis). Theoretical calculations and experimental results confirm that the formation of high-density ionic bonds between cations and CDs leads to efficient afterglow emission via the dissociation of CD arrangement, and the evolution of the aggregation state of CDs results in redshifted phosphorescence. These findings provide a strategy for the synthesis of new insights into achieving and manipulating room-temperature phosphorescent CDs, and prospect their applications in labeling and information encryption.

6.
Nano Lett ; 22(10): 4097-4105, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35536674

RESUMO

Triplet excitons usually do not emit light under ambient conditions due to the spin-forbidden transition rule, thus they are called dark excitons. Herein, triplet excitons in carbon nanodots (CNDs) are brightened by embedding the CNDs into poly(vinyl alcohol) (PVA) films; flexible multicolor phosphorescence films are thus demonstrated. PVA chains can isolate the CNDs, and excited state electron or energy transfer induced triplet exciton quenching is thus reduced; while the formed hydrogen bonds between the CNDs and PVA can restrict vibration/rotation of the CNDs, thus further protecting the triplet excitons from nonradiative recombination. The lifetimes of the flexible multicolor phosphorescence films can reach 567, 1387, 726, and 311 ms, and the longest-lasting phosphorescence film can be observed by naked eyes for nearly 15 s even after bending 5000 times. The phosphorescence films can be processed into various patterns, and a dynamic optical signature concept has been proposed and demonstrated based on the phosphorescence films.


Assuntos
Carbono , Ligação de Hidrogênio
7.
Small ; 16(22): e1907681, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32378305

RESUMO

Here, a pair of A1 -D-A2 -D-A1 unfused ring core-based nonfullerene small molecule acceptors (NF-SMAs), BO2FIDT-4Cl and BT2FIDT-4Cl is synthesized, which possess the same terminals (A1 ) and indacenodithiophene unit (D), coupling with different fluorinated electron-deficient central unit (difluorobenzoxadiazole or difluorobenzothiadiazole) (A2 ). BT2FIDT-4Cl exhibits a slightly smaller optical bandgap of 1.56 eV, upshifted highest occupied molecular orbital energy levels, much higher electron mobility, and slightly enhanced molecular packing order in neat thin films than that of BO2FIDT-4Cl. The polymer solar cells (PSCs) based on BT2FIDT-4Cl:PM7 yield the best power conversion efficiency (PCE) of 12.5% with a Voc of 0.97 V, which is higher than that of BO2FIDT-4Cl-based devices (PCE of 10.4%). The results demonstrate that the subtle modification of A2 unit would result in lower trap-assisted recombination, more favorable morphology features, and more balanced electron and hole mobility in the PM7:BT2FIDT-4Cl blend films. It is worth mentioning that the PCE of 12.5% is the highest value in nonfused ring NF-SMA-based binary PSCs with high Voc over 0.90 V. These results suggest that appropriate modulation of the quinoid electron-deficient central unit is an effective approach to construct highly efficient unfused ring NF-SMAs to boost PCE and Voc simultaneously.

8.
Nano Lett ; 19(8): 5553-5561, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31276414

RESUMO

Deep-ultraviolet (DUV) emissive carbon nanodots (CNDs) have been designed theoretically and demonstrated experimentally based on the results of first-principles calculations using the density functional theory method. The emission of the CNDs is located in the range from 280 to 300 nm, which coincides well with the results of theoretical calculation results. The photoluminescence (PL) quantum yield (QY) of the CNDs is up to 31.6%, and the strong emission of the CNDs originates from core-state (π-π*) carriers' radiative recombination and surface passivation. Benefiting from the core-state emission and surface group passivation, the emission of the CNDs is independent of the excitation wavelength and ambient solvent. DUV light-emitting diodes (LEDs) have been fabricated based on the DUV emissive CNDs, and the LEDs can be used as the excitation source to excite blue, green, and red CNDs, indicating their potential application in DUV light sources. This work may provide a clue for the designing and realizing of DUV emissive CNDs, thus promising the potential application of CNDs in DUV light-emitting sources.

9.
Nanotechnology ; 30(1): 015702, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30359331

RESUMO

A temperature-controlled synthesis process for ZnO nanoparticles (NPs) with the assist of oleylamine (OAm) has been demonstrated, and the ZnO NPs show bright fluorescence under ultraviolet illumination. In this process, zinc nitrate was firstly converted to zinc nitrate hydroxide (Zn5(OH)8(NO3)2) sheets with the assist of OAm, then the Zn5(OH)8(NO3)2 was decomposed into fluorescent ZnO NPs by increasing the ambient temperature. Furthermore, information encryption has been realized based on this process. For encryption, the encrypted information cannot be observed, while the encrypted information appears when they are proceeded in the temperature of 120 °C for about one minute. The results shown in this work provide a controllable way for the synthesis of ZnO NPs by adjusting the reaction temperature, and this may inspire wide applications of ZnO in information encryption.

10.
J Am Chem Soc ; 138(24): 7687-97, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27225322

RESUMO

We report the synthesis of a family of multifluorine substituted oligomers and the corresponding polymer that have the same backbones but different conjugation lengths and amounts of fluorine atoms on the backbone. The physical properties and photovoltaic performances of these materials were systematically investigated using optical absorption, charge mobility, atomic force microscopy, transmission electron microscopy, grazing incidence X-ray diffraction, resonant soft X-ray scattering methods, and photovoltaic devices. The power conversion efficiencies (PCEs) based on oligomers were much higher than that in the polymer. Moreover, the devices based on BIT6F and BIT10F, which have an axisymmetric electron-deficient difluorobenzothiadiazole as the central unit, gave slightly higher PCEs than those with centrosymmetric electron-rich indacenodithiophene (IDT) as the central unit (BIT4F or BIT8F). Using proper solvent vapor annealing (SVA), particularly using thermal annealing (TA) followed by SVA, the device performance could be significantly improved. Notably, the best PCE of 9.1% with a very high FF of 0.76 was achieved using the medium-sized oligomer BIT6F with the optimized film morphology. This efficiency is the highest value reported for organic solar cells from small-molecules without rhodanine terminal group. More excitingly, devices from the shortest oligomer BIT4F showed an impressively high FF of 0.77 (the highest FF value reported for solution-processed small-molecule organic solar cells). These results indicate that photovoltaic performances of oligomers can be modulated through successive change in chain-length and fluorine atoms, alternating spatial symmetric core, and combined post-treatments.

12.
ACS Appl Mater Interfaces ; 16(7): 8321-8332, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330195

RESUMO

Long-lasting and highly efficient antibacterial fabrics play a key role in public health occurrences caused by bacterial and viral infections. However, the production of antibacterial fabrics with a large size, highly efficient, and broad-spectrum antibacterial performance remains a great challenge due to the complex processes. Herein, we demonstrate sizable and highly efficient antibacterial fabrics through hydrogen bonding interaction and electrostatic interaction between surface groups of ZnO nanoparticles and fabric fibers. The production process can be carried out at room temperature and achieve a production rate of 300 × 1 m2 within 1 h. Under both visible light and dark conditions, the bactericidal rate against Gram-positive (S. aureus), Gram-negative (E. coli), and multidrug-resistant (MRSA) bacteria can reach an impressive 99.99%. Furthermore, the fabricated ZnO nanoparticle-decorated antibacterial fabrics (ZnO@fabric) show high stability and long-lasting antibacterial performance, making them easy to develop into variable antibacterial blocks for protection suits.


Assuntos
Escherichia coli , Óxido de Zinco , Staphylococcus aureus , Óxido de Zinco/farmacologia , Ligação de Hidrogênio , Eletricidade Estática , Antibacterianos/farmacologia
13.
Nat Commun ; 15(1): 4972, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862491

RESUMO

Molecular doping plays an important role in controlling the carrier concentration of organic semiconductors. However, the introduction of dopant counterions often results in increased energetic disorder and traps due to the molecular packing disruption and Coulomb potential wells. To date, no general strategy has been proposed to reduce the counterion-induced structural and energetic disorder. Here, we demonstrate the critical role of non-covalent interactions (NCIs) between counterions and polymers. Employing a computer-aided approach, we identified the optimal counterions and discovered that NCIs determine their docking positions, which significantly affect the counterion-induced energetic disorder. With the optimal counterions, we successfully reduced the energetic disorder to levels even lower than that of the undoped polymer. As a result, we achieved a high n-doped electrical conductivity of over 200 S cm-1 and an eight-fold increase in the thermoelectric power factor. We found that the NCIs have substantial effects on doping efficiency, polymer backbone planarity, and Coulomb potential landscape. Our work not only provides a general strategy for identifying the most suitable counterions but also deepens our understanding of the counterion effects on doped polymeric semiconductors.

14.
Adv Mater ; 36(23): e2313393, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573779

RESUMO

The meta-stable active layer morphology of organic solar cells (OSCs) is identified as the main cause of the rapid burn-in loss of power conversion efficiency (PCE) during long-term device operation. However, effective strategies to eliminate the associated loss mechanisms from the initial stage of device operation are still lacking, especially for high-efficiency material systems. Herein, the introduction of molecularly engineered dimer acceptors with adjustable thermal transition properties into the active layer of OSCs to serve as supramolecular stabilizers for regulating the thermal transitions and optimizing the crystallization of the absorber composites is reported. By establishing intimate π-π interactions with small-molecule acceptors, these stabilizers can effectively reduce the trap-state density (Nt) in the devices to achieve excellent PCEs over 19%. More importantly, the low Nt associated with an initially optimized morphology can be maintained under external stresses to significantly reduce the PCE burn-in loss in devices. This research reveals a judicious approach to improving OPV stability by establishing a comprehensive correlation between material properties, active-layer morphology, and device performance, for developing burn-in-free OSCs.

15.
ACS Appl Mater Interfaces ; 16(20): 26643-26652, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716902

RESUMO

A scene that contains both old and instant events with a clear motion trail is visually intriguing and dynamic, which can convey a sense of change, transition, or evolution. Developing an eco-friendly delay display system offers a powerful tool for fusing old and instant events, which can be used for visualizing motion trails. Herein, we brighten triplet excitons of carbon nanodots (CNDs) and increase their emission yield by a multidimensional confinement strategy, and the CND-based delay display array is demonstrated. The intense confinement effects via multidimensional confinement strategy suppress nonradiative transitions, and 240% enhancement in the phosphorescence efficiency and 260% enhancement in the lifetime of the CNDs are thus realized. Considering their distinctive phosphorescence performances, a delay display array containing a 4 × 4 CND-based delay lighting device is demonstrated, which can provide ultralong phosphorescence over 7 s, and the motion that occurred in different timelines is recorded clearly. This finding will motivate the investigation of phosphorescent CNDs in motion trail recognition.

16.
Sci Adv ; 10(14): eadk0647, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569023

RESUMO

Conjugated polymers have demonstrated promising optoelectronic properties, but their brittleness and poor mechanical characteristics have hindered their fabrication into durable fibers and textiles. Here, we report a universal approach to continuously producing highly strong, ultratough conjugated polymer fibers using a flow-enhanced crystallization (FLEX) method. These fibers exhibit one order of magnitude higher tensile strength (>200 megapascals) and toughness (>80 megajoules per cubic meter) than traditional semiconducting polymer fibers and films, outperforming many synthetic fibers, ready for scalable production. These fibers also exhibit unique strain-enhanced electronic properties and exceptional performance when used as stretchable conductors, thermoelectrics, transistors, and sensors. This work not only highlights the influence of fluid mechanical effects on the crystallization and mechanical properties of conjugated polymers but also opens up exciting possibilities for integrating these functional fibers into wearable electronics.

17.
Nat Commun ; 15(1): 2365, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491012

RESUMO

It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Luminescência
18.
Light Sci Appl ; 12(1): 72, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918547

RESUMO

Viral infection can lead to serious illness and death around the world, as exemplified by the spread of COVID-19. Using irradiation rays can inactive virions through ionizing and non-ionizing effect. The application of light in viral inactivation and the underlying mechanisms are reviewed by the research group of Dayong Jin from University of Technology Sydney.

19.
Adv Healthc Mater ; 12(23): e2300324, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178318

RESUMO

The increase in antibiotic resistance promotes the situation of developing new antibiotics at the forefront, while the development of non-antibiotic pharmaceuticals is equally significant. In the post-antibiotic era, nanomaterials with high antibacterial efficiency and no drug resistance make them attractive candidates for antibacterial materials. Carbon dots (CDs), as a kind of carbon-based zero-dimensional nanomaterial, are attracting much attention for their multifunctional properties. The abundant surface states, tunable photoexcited states, and excellent photo-electron transfer properties make sterilization of CDs feasible and are gradually emerging in the antibacterial field. This review provides comprehensive insights into the recent development of CDs in the antibacterial field. The topics include mechanisms, design, and optimization processes, and their potential practical applications are also highlighted, such as treatment of bacterial infections, against bacterial biofilms, antibacterial surfaces, food preservation, and bacteria imaging and detection. Meanwhile, the challenges and outlook of CDs in the antibacterial field are discussed and proposed.


Assuntos
Nanoestruturas , Pontos Quânticos , Carbono/farmacologia , Antibacterianos/farmacologia , Bactérias
20.
ACS Appl Mater Interfaces ; 15(16): 20302-20309, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042513

RESUMO

The easy-to-imitate character of a personal signature may cause significant economy loss due to the lack of speed and strength information. In this work, we report a time-resolved anti-counterfeiting signature strategy with artificial intelligence (AI) authentication based on the designed luminescent carbon nanodot (CND) ink, whose triplet excitons can be activated by the bonding between the paper fibers and the CNDs. Paper fibers can bond with the CNDs through multiple hydrogen bonds, and the activated triplet excitons release photons for about 13 s; thus, the speed and strength of the signature are recorded through recording the changes in luminescence intensity over time. The background noise from commercial paper fluorescence is completely suppressed, benefiting from the long phosphorescence lifetime of the CNDs. In addition, a reliable AI authentication method with quick response based on a convolutional neural network is developed, and 100% identification accuracy of the signature based on the CND ink is achieved, which is higher than that of the signature with commercial ink (78%). This strategy can also be expanded for painting, calligraphy identification.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa