Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 110(5): 1999-2005, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16471775

RESUMO

In this work, we applied a two-layered ONIOM (B3LYP/6-31G(d):UFF) method to study the reaction of nitric oxides with a 5-1DB defect on the sidewall of the single-walled carbon nanotube (SWCNT). We have chosen a suitable ONIOM model for the calculation of the SWCNT based on the analyses of the frontier molecular orbitals, local density of states, and natural bond orbitals. Our calculations clearly indicate that the 5-1DB defect is the chemically active center of the SWCNT. In the reaction of nitric oxides with the defected SWCNT, the 5-1DB defect site can capture a nitrogen atom from nitric oxides, yielding the N-substitutionally doped SWCNT. We have explored the reaction pathway in detail. Our work verifies the chemical reactivity of the 5-1DB defects of the SWCNTs, indicates that the 5-1DB defect is a possible site for the functionalization of the SWCNTs, and demonstrates a possible way to fabricate position controllable substitutionally doped SWCNTs with a low doping concentration under mild conditions via some simple chemical reactions.

2.
J Phys Chem B ; 110(26): 13037-44, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16805611

RESUMO

The ozonization at the vacancy defect site of the single-walled carbon nanotube has been studied by static quantum mechanics and atom-centered density matrix propagation based ab initio molecular dynamics within a two-layered ONIOM approach. Among five different reaction pathways at the vacancy defect, the reaction involving the unsaturated active carbon atom is the most probable pathway, where ozone undergoes fast dissociation at the active carbon atom at 300 K. Complementary to the experiments, our work provides a microscopic understanding of the ozonization at the vacancy defect site of the single-walled carbon nanotube.

3.
Nanoscale ; 2(2): 254-61, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20644802

RESUMO

The geometries, chemical shifts, aromaticity, and reactivity of finite-length open-ended armchair single-walled carbon nanotubes (SWCNTs) have been studied within density functional theory. The widely used model of capping hydrogen atoms at the open ends of a SWCNT changes the chemical activity of the SWCNT and destabilizes the frontier molecular orbitals. The edge pi-orbital of the open ends enhances both pi- and sigma-aromaticity of the first belt of hexagons of carbon atoms at the open ends. The effect of the open ends on the structure and chemical reactivity of the SWCNT reaches only the first several layers of the hexagons of carbon atoms. Additions of carbene and dichlorocarbene to the nanotube reveal that the open ends have higher reactivities than the inner regions.


Assuntos
Espectroscopia de Ressonância Magnética , Nanotubos de Carbono/química , Isótopos de Carbono/química , Modelos Teóricos , Teoria Quântica
4.
Phys Chem Chem Phys ; 8(30): 3528-39, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16871342

RESUMO

The structures of the (5,5) single-walled carbon nanotube (SWCNT) segments with hemispheric carbon cages capped at the ends (SWCNT rod) and the Pt-doped SWCNT rods have been studied within density functional theory. Our theoretical studies find that the hemispheric cages introduce localized states on the caps. The cap-Pt-doped SWCNT rods can be utilized as sensors because of the sensitivity of the doped Pt atom. The Pt-doped SWCNT rods can also be used as catalysts, where the doped Pt atom serves as the enhanced and localized active center on the SWCNT. The adsorptions of C(2)H(4) and H(2) on the Pt atom in the Pt-doped SWCNT rods reveal different adsorption characteristics. The adsorption of C(2)H(4) on the Pt atom in all of the three Pt-doped SWCNT rods studied (cap-end-doped, cap-doped, and wall-doped) is physisorption with the strongest interaction occurring in the middle of the sidewall of the SWCNT. On the other hand, the adsorption of H(2) on the Pt atom at the sidewall of the SWCNT is chemisorption resulting in the decomposition of H(2), and the adsorption of H(2) at the hemispheric caps is physisorption.


Assuntos
Nanotubos de Carbono/química , Platina/química , Adsorção , Elétrons , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa