Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Gut ; 73(4): 601-612, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38176897

RESUMO

OBJECTIVE: Mucosal T cells play a major role in inflammatory bowel disease (IBD). However, their immunometabolism during intestinal inflammation is poorly understood. Due to its impact on cellular metabolism and proinflammatory immune cell function, we here focus on the enzyme ATP citrate lyase (ACLY) in mucosal T cell immunometabolism and its relevance for IBD. DESIGN: ACLY expression and its immunometabolic impact on colitogenic T cell function were analysed in mucosal T cells from patients with IBD and in two experimental colitis models. RESULTS: ACLY was markedly expressed in colon tissue under steady-state conditions but was significantly downregulated in lamina propria mononuclear cells in experimental dextran sodium sulfate-induced colitis and in CD4+ and to a lesser extent in CD8+ T cells infiltrating the inflamed gut in patients with IBD. ACLY-deficient CD4+ T cells showed an impaired capacity to induce intestinal inflammation in a transfer colitis model as compared with wild-type T cells. Assessment of T cell immunometabolism revealed that ACLY deficiency dampened the production of IBD-relevant cytokines and impaired glycolytic ATP production but enriched metabolites involved in the biosynthesis of phospholipids and phosphatidylcholine. Interestingly, the short-chain fatty acid butyrate was identified as a potent suppressor of ACLY expression in T cells, while IL-36α and resolvin E1 induced ACLY levels. In a translational approach, in vivo administration of the butyrate prodrug tributyrin downregulated mucosal infiltration of ACLYhigh CD4+ T cells and ameliorated chronic colitis. CONCLUSION: ACLY controls mucosal T cell immunometabolism and experimental colitis. Therapeutic modulation of ACLY expression in T cells emerges as a novel strategy to promote the resolution of intestinal inflammation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Linfócitos Intraepiteliais , Humanos , Animais , Linfócitos Intraepiteliais/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Colite/metabolismo , Inflamação/metabolismo , Butiratos , Mucosa Intestinal/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças
2.
Mol Biol Rep ; 51(1): 520, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625436

RESUMO

BACKGROUND: Mutations in human ether-à-go-go-related gene (hERG) potassium channels are closely associated with long QT syndrome (LQTS). Previous studies have demonstrated that macrolide antibiotics increase the risk of cardiovascular diseases. To date, the mechanisms underlying acquired LQTS remain elusive. METHODS: A novel hERG mutation I1025N was identified in an azithromycin-treated patient with acquired long QT syndrome via Sanger sequencing. The mutant I1025N plasmid was transfected into HEK-293 cells, which were subsequently incubated with azithromycin. The effect of azithromycin and mutant I1025N on the hERG channel was evaluated via western blot, immunofluorescence, and electrophysiology techniques. RESULTS: The protein expression of the mature hERG protein was down-regulated, whereas that of the immature hERG protein was up-regulated in mutant I1025N HEK-293 cells. Azithromycin administration resulted in a negative effect on the maturation of the hERG protein. Additionally, the I1025N mutation exerted an inhibitory effect on hERG channel current. Moreover, azithromycin inhibited hERG channel current in a concentration-dependent manner. The I1025N mutation and azithromycin synergistically decreased hERG channel expression and hERG current. However, the I1025N mutation and azithromycin did not alter channel gating dynamics. CONCLUSIONS: These findings suggest that hERG gene mutations might be involved in the genetic susceptibility mechanism underlying acquired LQTS induced by azithromycin.


Assuntos
Azitromicina , Síndrome do QT Longo , Humanos , Azitromicina/efeitos adversos , Células HEK293 , Antibacterianos/efeitos adversos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/genética , Mutação
3.
Angew Chem Int Ed Engl ; : e202416851, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39453775

RESUMO

Despite recent advances in cluster-based catalysis for organic synthesis, the substrate scope of reactions catalyzed by metal nanoclusters is typically not superior to previously established catalytic systems. Herein, we develop new atomically precise copper nanoclusters for protosilylation, with scope expanding to alkenes and simple enynes that were not suitable for prior synthetic methodologies with traditional copper complexes. The involvement of a second copper center in the metal kernel during the migratory insertion step is thought to be responsible for the expanded scope. In addition, the reaction is highly compatible with water and can be carried out in open air rather than under inert gas protection. Mechanistic studies suggest that the cluster-catalyzed protosilylation proceeds in the absence of silyl radicals. The current findings demonstrate the potential of using metal nanoclusters for practical and sustainable chemical synthesis.

4.
Gut ; 72(11): 2081-2094, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541770

RESUMO

IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of Il3 or Il3r deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of Il3r -/- and Il3r +/+ T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and in vitro and in vivo cell trafficking assays. We observed that, in patients with IBD, the levels of IL-3 in the inflamed mucosa were increased. In vivo, experimental chronic colitis on T cell transfer was exacerbated in the absence of Il-3 or Il-3r signalling. This was attributable to Il-3r signalling-induced changes in kinase phosphorylation and actin cytoskeleton structure, resulting in increased mechanical deformability and enhanced egress of Tregs from the inflamed colon mucosa. Similarly, IL-3 controlled mechanobiology in human Tregs and was associated with increased mucosal Treg abundance in patients with IBD. Collectively, our data reveal that IL-3 signaling exerts an important regulatory role at the interface of biophysical and migratory T cell features in intestinal inflammation and suggest that this might be an interesting target for future intervention.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Linfócitos T Reguladores , Receptores de Interleucina-3/metabolismo , Interleucina-3/metabolismo , Inflamação/metabolismo , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 48(3): 569-578, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872219

RESUMO

Circadian rhythm is an internal regulatory mechanism formed in organisms in response to the circadian periodicity in the environment, which modulates the pathophysiological events, occurrence and development of diseases, and the response to treatment in mammals. It significantly influences the susceptibility, injury, and recovery of ischemic stroke, and the response to therapy. Accumulating evidence indicates that circadian rhythms not only regulate the important physiological factors of ischemic stroke events, such as blood pressure and coagulation-fibrinolysis system, but also participate in the immuno-inflammatory reaction mediated by glial cells and peripheral immune cells after ischemic injury and the regulation of neurovascular unit(NVU). This article aims to link molecular, cellular, and physiological pathways in circadian biology to the clinical consequences of ischemic stroke and to illustrate the impact of circadian rhythms on ischemic stroke pathogenesis, the regulation of NVU, and the immuno-inflammatory responses. The regulation of circadian rhythm by traditional Chinese medicine is reviewed, and the research progress of traditional Chinese medicine intervention in circadian rhythm is summarized to provide a reasonable and valuable reference for the follow-up traditional Chinese medicine research and molecular mechanism research of circadian rhythm.


Assuntos
AVC Isquêmico , Animais , Medicina Tradicional Chinesa , Ritmo Circadiano , Coagulação Sanguínea , Pressão Sanguínea , Mamíferos
6.
Angew Chem Int Ed Engl ; 62(5): e202212707, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36383643

RESUMO

Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl- , Br- ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.

7.
Angew Chem Int Ed Engl ; 62(21): e202300233, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36896733

RESUMO

Visible-light copper photocatalysis has recently emerged as a viable technology for building sustainable synthetic processes. To broaden the applications of phosphine-ligated copper(I) complexes, we describe herein an effective metal-organic framework (MOF)-supported copper(I) photocatalyst for multiple iminyl radical-mediated reactions. Due to site isolation, the heterogenized copper photosensitizer has a significantly higher catalytic activity than its homogeneous counterpart. Using a hydroxamic acid linker to immobilize copper species on MOF supports affords the heterogeneous catalysts with high recyclability. The post-synthetic modification sequence on MOF surfaces allows for the preparation of previously unavailable monomeric copper species. Our findings highlight the potential of using MOF-based heterogeneous catalytic systems to address fundamental challenges in the development of synthetic methodologies and mechanistic investigations of transition-metal photoredox catalysis.

8.
Angew Chem Int Ed Engl ; 62(33): e202306696, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37327033

RESUMO

The systematic induction of structural defects at the atomic level is crucial to metal nanocluster research because it endows cluster-based catalysts with highly reactive centers and allows for a comprehensive investigation of viable reaction pathways. Herein, by substituting neutral phosphine ligands for surface anionic thiolate ligands, we establish that one or two Au3 triangular units can be successfully introduced into the double-stranded helical kernel of Au44 (TBBT)28 , where TBBT=4-tert-butylbenzenethiolate, resulting in the formation of two atomically precise defective Au44 nanoclusters. Along with the regular face-centered-cubic (fcc) nanocluster, the first series of mixed-ligand cluster homologues is identified, with a unified formula of Au44 (PPh3 )n (TBBT)28-2n (n=0-2). The Au44 (PPh3 )(TBBT)26 nanocluster having major structural defects at the bottom of the fcc lattice demonstrates superior electrocatalytic performance in the CO2 reduction to CO. Density functional theory calculations indicate that the active site near the defects significantly lowers the free energy for the *COOH formation, the rate-determining step in the whole catalytic process.

9.
Thorax ; 77(7): 652-662, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34417352

RESUMO

BACKGROUND: Growing evidence suggests that compromised lung health may be linked to cardiovascular disease. However, little is known about its association with sudden cardiac death (SCD). OBJECTIVES: We aimed to assess the link between impaired lung function, airflow obstruction and risk of SCD by race and gender in four US communities. METHODS: A total of 14 708 Atherosclerosis Risk in Communities (ARIC) study participants who underwent spirometry and were asked about lung health (1987-1989) were followed. The main outcome was physician-adjudicated SCD. Fine-Gray proportional subdistribution hazard models with Firth's penalised partial likelihood correction were used to estimate the HRs. RESULTS: Over a median follow-up of 25.4 years, 706 (4.8%) subjects experienced SCD. The incidence of SCD was inversely associated with FEV1 in each of the four race and gender groups and across all smoking status categories. After adjusting for multiple measured confounders, HRs of SCD comparing the lowest with the highest quintile of FEV1 were 2.62 (95% CI 1.62 to 4.26) for white males, 1.80 (95% CI 1.03 to 3.15) for white females, 2.07 (95% CI 1.05 to 4.11) for black males and 2.62 (95% CI 1.21 to 5.65) for black females. The above associations were consistently observed among the never smokers. Moderate to very severe airflow obstruction was associated with increased risk of SCD. Addition of FEV1 significantly improved the predictive power for SCD. CONCLUSIONS: Impaired lung function and airflow obstruction were associated with increased risk of SCD in general population. Additional research to elucidate the underlying mechanisms is warranted.


Assuntos
Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Feminino , Humanos , Pulmão , Masculino , Estudos Prospectivos , Fatores de Risco
10.
Environ Sci Technol ; 56(17): 12613-12624, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35960689

RESUMO

In situ growth of nanostructures on substrates is a strategy for designing highly efficient catalytic materials. Herein, multimetallic CuCoNi oxide nanowires are synthesized in situ on a three-dimensional nickel foam (NF) substrate (CuCoNi-NF) by a hydrothermal method and applied to peroxydisulfate (PDS) activation as immobilized catalysts. The catalytic performance of CuCoNi-NF is evaluated through the degradation of organic pollutants such as bisphenol A (BPA) and practical wastewater. The results indicate that the NF not only plays an important role as the substrate support but also serves as an internal Ni source for material fabrication. CuCoNi-NF exhibits high activity and stability during PDS activation as it mediates electron transfer from BPA to PDS. CuCoNi-NF first donates electrons to PDS to arrive at an oxidized state and subsequently deprives electrons from BPA to return to the initial state. CuCoNi-NF maintains high catalytic activity in the pH range of 5.2-9.2, adapts to a high ionic strength up to 100 mM, and resists background HCO3- and humic acid. Meanwhile, 76.6% of the total organic carbon can be removed from packaging wastewater by CuCoNi-NF-catalyzed PDS activation. This immobilized catalyst shows promising potential in wastewater treatment, well addressing the separation and recovery of conventional powdered catalysts.


Assuntos
Nanofios , Óxidos , Catálise , Elétrons , Níquel , Oxirredução , Águas Residuárias
11.
Ecotoxicol Environ Saf ; 247: 114229, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306614

RESUMO

Although the phytotoxicity of graphene-based materials has been investigated extensively, the effects of different graphene-based materials on nutrient uptake in plants remain unclear. Here, we analyzed the differences in phytotoxicity between single-layer graphene oxide (sGO) and multi-layer graphene oxide (mGO) by analyzing the growth status and nitrate (NO3-) accumulation in wheat plants at 0, 100, 200, 400, and 800 mg L-1 graphene oxide supply. Both sGO and mGO displayed concentration-dependent inhibitory effects on biomass, root length, number of lateral roots, and nitrogen (N) nutrient status. Treatment with 400 mg L-1 sGO caused 0.9-, 1.3-, and 1-fold higher reductions in NO3--N, assimilated N, and total N concentrations in roots, respectively, than mGO treatment. Analysis of root oxidative stress and in situ NO3- uptake revealed that sGO caused more significant damage to the root tip and a lower NO3- net influx rate than mGO. In addition, the expression of NO3- transporter (NRT) genes in roots, including NRT1.5, NRT2.1, NRT2.2, NRT2.3, and NRT2.4, under sGO treatment were lower than those under mGO treatment. Overall, sGO treatment induced a more severe inhibitory effect on root growth and NO3- uptake and accumulation than mGO treatment, accompanied by significant suppression of the expression of NRTs in sGO-treated roots. This study provides a physiological and molecular basis for studying the phytotoxic effects of various sizes of graphene oxide.


Assuntos
Grafite , Triticum , Triticum/metabolismo , Nitratos/metabolismo , Grafite/metabolismo , Raízes de Plantas/metabolismo , Óxido de Magnésio , Nitrogênio/metabolismo
12.
Angew Chem Int Ed Engl ; 61(35): e202205626, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35672885

RESUMO

Atomically precise copper clusters are highly desirable catalysts for electrocatalytic CO2 reduction reaction (CO2 RR) and provide an ideal platform for elaborating structure-activity relationships. However, systematic comparative studies of Cu cluster isomers for electrocatalytic CO2 RR are lacking because they are challenging to synthesize. A group of structurally precise Cu8 cluster isomers with different core structures (cube- and ditetrahedron-shaped) were developed and investigated for highly active and selective CO2 reduction. Electrocatalytic measurements showed that the ditetrahedron-shaped Cu8 cluster exhibited a higher FEHCOOH (≈92 %) at -1.0 V and higher selectivity than the cube-shaped cluster. Theoretical investigations revealed different levels of competitiveness with the hydrogen evolution reaction on the respective core-shaped Cu8 clusters and decreased free energies for the adsorbed HCOO* intermediates on the ditetrahedron-shaped Cu8 clusters.

13.
BMC Gastroenterol ; 21(1): 84, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622256

RESUMO

BACKGROUND: Hepatic cavernous hemangioma is the most common type of benign liver tumor. Although ruptures and hemorrhages of hepatic hemangioma are rare complications, they are associated with high mortality. Most practitioners only pay more attention to abdominal hemorrhages caused by the rupture of hepatic hemangiomas. However, spontaneous intracapsular hemorrhages can often be neglected and poorly understood. CASE PRESENTATION: A 65-year-old man was referred to our institution with right upper quadrant pain, which had occurred suddenly and without a history of recent trauma. The blood test results were normal. Magnetic resonance imaging (MRI) of the abdomen showed a cystic mass in the right liver lobe. Considering the possibility of hepatic cystadenoma with hemorrhage, the patient underwent a right hepatic lobectomy. The pathological findings unexpectedly revealed intratumoral hemorrhage of hepatic hemangioma. The patient recovered well and was discharged eight days after surgery. CONCLUSIONS: Intracapsular hemorrhage of hepatic cavernous hemangioma is challenging to diagnose and has a high potential risk of rupture. MRI is beneficial for diagnosing subacute internal hemorrhage cases, and it is recommended to undergo surgery for patients with a definitive diagnosis.


Assuntos
Hemangioma Cavernoso , Hemangioma , Neoplasias Hepáticas , Idoso , Hemangioma Cavernoso/complicações , Hemangioma Cavernoso/diagnóstico por imagem , Hemangioma Cavernoso/cirurgia , Hemorragia/etiologia , Humanos , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia
15.
Breast Cancer Res Treat ; 182(1): 21-33, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415497

RESUMO

PURPOSE: Previous studies have indicated that transient receptor potential (TRP) channels can influence cancer development. The TRPC subfamily consists of seven subtypes, TRPC1 - TRPC7. Interestingly, the expression levels of TRPC1 have been shown to be totally different in different breast cancer cell lines. Nevertheless, the underlying mechanism remains unknown. In this study, we explore the significance of TRPC1 expression in breast cancer. METHODS: Immunohistochemical TRPC1 staining was performed in 278 samples. TRPC1 expression in different breast tissues were examined. Then, the influence of TRPC1 on migration, invasion and proliferation was explored. We analyzed the protein of TRPC1 by Western blot to prove which pathway may be involved in. Finally, we use online database to predict the prognosis of TRPC1 in breast cancer. RESULTS: Through immunohistochemistry and in vitro experiments, we found that the expression level of TRPC1 was higher in breast cancer cells as compared with that in normal breast epithelial cells. Moreover, the expression level of TRPC1 was different between estrogen receptor-positive (ER +) and -negative (ER -) breast cancer. It was shown that TRPC1 inhibited MCF7 cell proliferation, migration, and invasion in vitro. Western blotting revealed that TRPC1 inhibited the PI3K/AKT pathway and epithelium-mesenchymal transformation, leading to subsequent inhibition of cell proliferation and metastasis. In luminal A and luminal B patients, those with high TRPC1 expression had a better prognosis. On the contrary, in basal-like and triple-negative breast cancer (TNBC) subtypes, patients with high-TRPC1 expression had a worse prognosis. CONCLUSIONS: We confirmed that TRPC1 was high expression in breast cancer. Overexpression of TRPC1 inhibits proliferation and migration of ER + breast cancer and gives a better prognosis by inhibiting PI3K/AKT pathway activation. TRPC1 may be an independent prognostic predictor in breast cancer patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Canais de Cátion TRPC/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Canais de Cátion TRPC/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
16.
Toxicol Appl Pharmacol ; 389: 114882, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31953203

RESUMO

Pulmonary fibrosis is a prototypic chronic progressive lung disease with high morbidity and mortality worldwide. Novel effective therapeutic agents are urgently needed owing to the limited treatment options in clinic. Herein, nagilactone D (NLD), a natural dinorditerpenoid obtained from Podocarpus nagi, was found to suppress transforming growth factor-ß1 (TGF-ß1)-mediated fibrotic process in vitro and bleomycin (BLM)-induced pulmonary fibrosis in vivo. NLD attenuated TGF-ß1-induced expression of fibrotic markers including type I and III collagen, fibronectin, α-SMA, and CTGF in human pulmonary fibroblasts (WI-38 VA-13 and HLF-1 cells). Mechanism study indicated that NLD suppressed TGF-ß1-induced up-regulation of TßR I, and Smad2 phosphorylation, nuclear translocation, and transcriptional activation. Moreover, NLD ameliorated BLM-induced histopathological abnormalities in the lungs of experimental fibrotic mice, suppressed synthesis of relative fibrotic markers and fibroblast-to-myofibroblast transition, as well as BLM-induced up-regulation of TßR I expression and Smad signaling in mouse lungs. These data collectively support NLD to be a potential therapeutic agent for pulmonary fibrosis.


Assuntos
Diterpenos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Proteína Smad2/metabolismo , Terpenos/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Biomarcadores/metabolismo , Bleomicina/farmacologia , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Phys Chem Chem Phys ; 22(17): 9349-9361, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32309835

RESUMO

The fundamental understanding of the cooperativity of a Brønsted acid together with its anion for cellulose conversion in an aqueous solution is limited at present, in which cellobiose has usually been regarded as a bridge that connects monosaccharides and cellulose. The mechanism of ß-cellobiose conversion to 5-hydroxymethylfurfural (HMF) catalyzed by a Brønsted acid (H3O+) accompanied by counteranions in an aqueous solution has been studied using quantum chemical calculations at the M06-2X/6-311++G(d,p) level under a polarized continuum model (PCM-SMD). For the formation of the first HMF from cellobiose, there are three reaction pathways, i.e., through cellobiulose and glycosyl-HMF (C/H), through cellobiulose and fructose (C/F/H), and through glucose (C/G/H). For these three reaction pathways, the rate-determining steps are associated with the intramolecular [1,2]-H shift in the aldose-ketose tautomerization. C/H is the thermodynamically predominant pathway, while C/G/H is the kinetically dominant pathway. From cellobiose, the origin of the first HMF results kinetically from a small proportion of both C/H and C/F/H and from a large proportion of C/G/H. For the role of the counteranion in the catalytic activity of H3O+, the halide anions (Cl- and Br-) act as promoters, whereas both NO3- anions and carboxylate-containing anions behave as inhibitors. The roles of these anions in ß-cellobiose conversion to HMF can be correlated with their electrostatic potential and atomic number, which may cause a decrease in the relative enthalpy energy and the value of entropy on interacting with the cation moiety. These insights may advance the novel design of sustainable conversion systems for cellulose conversion into HMF.

18.
Int J Syst Evol Microbiol ; 69(3): 811-815, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30688630

RESUMO

A facultatively anaerobic and Gram-negative bacterium, designated strain PLHSC7-2T, was isolated from the gut of sea cucumber Apostichopusjaponicus that had been collected from the coastal area of Yantai, China. The cells were rod-shaped and motile by means of polar flagella. The novel isolate grew optimally at 28-30 °C, in the presence of 2.0-3.0 % (w/v) NaCl and at pH 7.0-7.5. The sole respiratory quinone was Q-8 and the major fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C17 : 0. The predominant polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain PLHSC7-2T was phylogenetically affiliated with the genus Motilimonas, and exhibited sequence similarity of 96.2 % toMotilimonas eburnea YH6T. The DNA G+C content was 45.5 mol%. On the basis of phenotypic , phylogenetic and genetic distinctiveness, strain PLHSC7-2T (=MCCC 1K03522T=KCTC 62589T) was classified as a novel species within the genus Motilimonas, for which the name Motilimonas pumila sp. nov. is proposed.


Assuntos
Gammaproteobacteria/classificação , Filogenia , Stichopus/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Phys Chem Chem Phys ; 21(7): 3795-3804, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30714064

RESUMO

The selective removal of oxygen from 5-hydroxymethylfurfural (HMF) is challenging for the effective utilization of biomass. The catalytic mechanisms of palladium acetate toward the conversion of HMF to furfuryl alcohol (FFA), 5-methylfurfural (5-MF) and 2,5-dihydroxymethyl furan (DHMF) have been theoretically investigated. The decarbonylation of HMF to FFA includes (i) migratory extrusion, (ii) metal-acetate-co-assisted deprotonation, (iii) decarbonylation, (iv) metal-assisted deprotonation, and (v) migratory extrusion and catalyst regeneration. Both hydrogenation and deoxidation of HMF with HCOOH as the H-source involve (i) migratory extrusion, (ii) oxidative addition, (iii) reductive elimination, (iv) metal-assisted deprotonation, and (v) migratory extrusion and catalyst regeneration. The C-H bond cleavage is the crucial reaction step, in which the metal-acetate-co-assisted deprotonation is kinetically more preferable than the oxidative addition. Both FFA and DHMF are kinetically superior to 5-MF. In terms of selectivity, increasing the temperature is beneficial to decarbonylation and decreasing the temperature is advantageous to hydrogenation. The present finding provides molecular-level insight into the functions of both the metal-center and coordinated-ligand in the Pd(OAc)2 catalyst, which may drive the novel design of catalytic systems toward both decarbonylation and hydrogenation reactions.

20.
Exp Cell Res ; 363(2): 315-320, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29395134

RESUMO

BACKGROUND: Recent studies have revealed that mutation in KCNE1, ß-subunits of cardiac potassium channel, involved in ventricular fibrillation. Whereas its role in early repolarization syndrome (ERS) is less well understood. OBJECTIVE: To study whether mutant in KCNE1 is associated with ERS and explore the possible underlying molecular mechanisms. METHODS: Whole genome from four unrelated families with ERS was amplified and sequenced. Wild-type (WT) KCNE1 and/or KCNE1-S38G (S38G) were expressed in HEK293 cells with KCNQ1. Functional studies included whole-cell patch-clamp, western blot and immunofluorescence were performed to reveal the possible underlying mechanisms. RESULTS: The co-expression of KCNE1-S38G and KCNQ1 decreased tail current density of IKs but had little effect in modulation channel kinetics of IKs. Compared with KCNE1-WT, the expression and membrane location of KCNE1-S38G decreased. Co-expression of KCNE1-WT and KCNE1-S38G partially rescued the function of IKs channel. CONCLUSIONS: The S38G mutation induced a loss-of-function of IKs due to decreasing of KCNE1 protein expression and defecting in KCNE1 protein membrane trafficking. Our findings suggested that KCNE1 may be one of the possible modulatory genes associated to ERS.


Assuntos
Mutação/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Adulto , Idoso , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , Moduladores de Transporte de Membrana/metabolismo , Pessoa de Meia-Idade , Linhagem , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa