Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 248: 118308, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281563

RESUMO

Despite numerous data on organophosphate tri-esters (tri-OPEs) in the environment, literatures on organophosphate di-esters (di-OPEs) in field environment, especially marine sediments remain scarce. This study addresses this gap by analyzing 35 abyssal sediment samples from the middle Okinawa Trough in the East China Sea. A total of 25 tri-OPEs and 10 di-OPEs were determined, but 13 tri-OPEs and 2 di-OPEs were nondetectable in any of these sediment samples. The concentrations of ∑12tri-OPE and ∑8di-OPE were 0.108-32.2 ng/g (median 1.11 ng/g) and 0.548-15.0 ng/g (median 2.74 ng/g). Chlorinated (Cl) tri-OPEs were the dominant tri-esters, accounting for 47.5 % of total tri-OPEs on average, whereas chlorinated di-OPEs represented only 19.2 % of total di-OPEs. This discrepancy between the relatively higher percentage of Cl-tri-OPEs and lower abundance of Cl-di-OPEs may be ascribed to the stronger environmental persistence of chlorinated tri-OPEs. Source assessment suggested that di-OPEs were primarily originated from the degradation of tri-OPEs rather than industrial production. Long range waterborne transport facilitated by oceanic currents was an important input pathway for OPEs in sediments from the Okinawa Trough. These findings enhance the understanding of the sources and transport of OPEs in marine sediments, particularly in the Okinawa Trough.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , Ésteres , Retardadores de Chama/análise , China , Organofosfatos , Sedimentos Geológicos
2.
Sci Total Environ ; 932: 173013, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719041

RESUMO

As a highly effective broad-spectrum antibacterial agent, triclosan (TCS) is widely used in personal care and medical disinfection products, resulting in its widespread occurrence in aquatic and terrestrial environments, and even in the human body. Notably, the use of TCS surged during the COVID-19 outbreak, leading to increasing environmental TCS pollution pressure. From the perspective of environmental health, it is essential to systematically understand the environmental occurrence and behavior of TCS, its toxicological effects on biota and humans, and technologies to remove TCS from the environment. This review comprehensively summarizes the current knowledge regarding the sources and behavior of TCS in surface water, groundwater, and soil systems, focusing on its toxicological effects on aquatic and terrestrial organisms. Effluent from wastewater treatment plants is the primary source of TCS in aquatic systems, whereas sewage application and/or wastewater irrigation are the major sources of TCS in soil. Human exposure pathways to TCS and associated adverse outcomes were also analyzed. Skin and oral mucosal absorption, and dietary intake are important TCS exposure pathways. Reducing or completely degrading TCS in the environment is important for alleviating environmental pollution and protecting public health. Therefore, this paper reviews the removal mechanisms, including adsorption, biotic and abiotic redox reactions, and the influencing factors. In addition, the advantages and disadvantages of the different techniques are compared, and development prospects are proposed. These findings provide a basis for the management and risk assessment of TCS and are beneficial for the application of treatment technology in TCS removal.


Assuntos
Triclosan , Triclosan/toxicidade , Humanos , Anti-Infecciosos Locais , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
Chemosphere ; 361: 142424, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795915

RESUMO

As emerging contaminants, micro- and nanoplastics (MNPs) can absorb and leach various toxic chemicals and ultimately endanger the health of the ecological environment and humans. With extensive research on MNPs, knowledge about MNPs in humans, especially their translocation of barriers and potential health effects, is of utmost importance. In this review, we collected literature published from 2000 to 2023, focusing on MNPs on their occurrence in humans, penetrating characteristics in the placental, blood-brain, and blood-testis barriers, and exposure effects on mammalian health. The characteristics and distributions of MNPs in human samples were analyzed, and the results demonstrated that MNPs were ubiquitous in most human samples, except for kidneys and cerebrospinal fluid. In addition, the phenomenon of MNPs crossing barriers and their underlying mechanisms were discussed. We also summarized the potential factors that may affect the barrier crossing and health effects of MNPs, including characteristics of MNPs, exposure doses, administration routes, exposure durations, co-exposure to other pollutants, and genetic predisposition. Exposure to MNPs may cause cytotoxicity, neurotoxicity, and developmental and reproductive toxicity in mammals. People are encouraged to reduce their exposure to MNPs to prevent these adverse health effects. Finally, we discussed the shortcomings of current research on MNPs in humans, providing a valuable reference for understanding and evaluating the potential health risks from MNP exposure in mammals, including humans.


Assuntos
Microplásticos , Humanos , Microplásticos/toxicidade , Animais , Poluentes Ambientais/toxicidade , Nanopartículas/toxicidade , Exposição Ambiental , Barreira Hematoencefálica/metabolismo , Placenta/metabolismo , Feminino , Gravidez
4.
J Hazard Mater ; 477: 135372, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39106723

RESUMO

Tree bark has been proven as an effective passive air sampler, particularly where access to active sampling methods is limited. In this study, 60 target liquid crystal monomers (LCMs; comprising 10 cyanobiphenyl and analogs (CBAs), 13 biphenyl and analogs (BAs), and 37 fluorinated biphenyl and analogs (FBAs)) were analyzed in 34 tree barks collected from the vicinity of a liquid crystal display (LCD) manufacturer situated in the Pearl River Delta, South China. The concentrations of LCMs in tree barks ranged from 1400 to 16000 ng/g lipid weight, with an average of 5900 ng/g lipid weight. Generally, bark levels of BAs exponentially decreased within 5 km of the LCD manufacturer. The profiles of LCMs in tree barks are similar to previously reported patterns in gaseous phase, suggesting bark's efficacy as a sampler for gaseous LCMs. The inclusion of different congeners in existing studies on the environmental occurrence of LCMs has hindered the horizontal comparisons. Therefore, this study established a list of priority LCMs based on environmental monitoring data and the publicly accessible production data. This list comprised 146 LCMs, including 63 REACH registered LCMs that haven't been analyzed in any study and 56 belonging to 4 types of mainstream LCMs.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Cristais Líquidos , Casca de Planta , Casca de Planta/química , Cristais Líquidos/química , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , China , Compostos de Bifenilo
5.
J Hazard Mater ; 477: 135201, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068891

RESUMO

Field research on phthalate monoesters (MPEs) and their relationships with phthalate esters (PAEs) is limited, especially in wild fishes. Here, PAEs and MPEs were measured in surface water, sediment, and wild fish collected from a representative river basin with high economic development. Several metabolites of emerging plasticizers, such as mono(3,5,5-trimethyl-1-hexyl) phthalate and mono(6-oxo-2-propylheptyl) phthalate, have already existed in fish with high detection frequencies (95 % and 100 %). Monobutyl phthalate and mono(2-ethylhexyl) phthalate were the predominant MPEs in fish and natural environment (surface water and sediment), while bis(2-ethylhexyl) phthalate was the most abundant PAEs in all matrices. The total concentrations (median) of 9 PAEs and 16 MPEs were 5980 and 266 ng/L in water, 231 and 10.6 ng/g (dw) in sediment, and 209 and 32.5 ng/g (ww) in fish, respectively. The occurrence of MPEs was highly related to their parent PAEs, with similar spatial distribution characteristics in the aquatic environments. Moreover, municipal wastewater discharge was recognized as the main source of MPEs in the research area. Fish species can accumulate targeted chemicals, and it seems more MPEs were from the PAE degradation in fish other than the direct uptake of MPEs in water. Parent PAEs showed higher ecological risk than their corresponding metabolites.


Assuntos
Monitoramento Ambiental , Ésteres , Peixes , Sedimentos Geológicos , Ácidos Ftálicos , Poluentes Químicos da Água , Ácidos Ftálicos/análise , Ácidos Ftálicos/metabolismo , Poluentes Químicos da Água/análise , Animais , Peixes/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Ésteres/análise , Rios/química , Plastificantes/análise , Plastificantes/metabolismo , Medição de Risco
6.
Food Chem ; 437(Pt 2): 137917, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37944391

RESUMO

A novel methodology based on ultrasonic-assisted sequential extraction, dispersive-SPE purification, and single-injection on liquid chromatography-tandem mass spectrometry (LC-MS/MS) is proposed, for the first time, to simultaneously measure 14 tri-OPEs and 9 di-OPEs in plant tissues. The samples were successively ultrasonicated with a mixture of hexane:dichloromethane (1:1, v/v) and 8% acetic acid in acetonitrile for extracting tri- and di-OPEs purified with graphitized carbon black and quantitated on LC-MS/MS at the same time. The recoveries of targeted tri- and di-OPEs in the matrix spike ranged from 66% to 120% and 71% to 110% respectively. The proposed method was validated by processing eight types of common vegetables including spinach (Spinacia oleracea L.), lettuce (Lactuca sativa), carrot (Daucus carota var. sativa Hoffm.), sweet potato (Solanum tuberosum L.), cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), green beans (Phaseolus vulgaris), and cowpeas (Vigna unguiculata), with the recoveries of surrogates ranging from 84% to 98%.


Assuntos
Organofosfatos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Organofosfatos/análise , Ésteres/análise , Ultrassom , Lactuca , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão
7.
Environ Int ; 187: 108719, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718677

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have been shown to penetrate the blood-brain barrier (BBB) and accumulate in human brain. The BBB transmission and accumulation efficiency of PFAS, as well as the potential health risks from human co-exposure to legacy and emerging PFAS due to differences in transport efficiency, need to be further elucidated. In the present pilot study, 23 plasma samples from glioma patients were analyzed for 17 PFAS. The concentrations of PFAS in six paired brain tissue and plasma samples were used to calculate the BBB transmission efficiency of PFAS (RPFAS). This RPFAS analysis was conducted with utmost care and consideration amid the limited availability of valuable paired samples. The results indicated that low molecular weight PFAS, including short-chain and emerging PFAS, may have a greater potential for accumulation in brain tissue than long-chain PFAS. As an alternative to perfluorooctane sulfonic acid (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibited brain accumulation potential similar to that of PFOS, suggesting it may not be a suitable substitute concerning health risk in brain. The BBB transmission efficiencies of perfluorooctanoic acid, PFOS, and 6:2 Cl-PFESA showed similar trends with age, which may be an important factor influencing the entry of exogenous compounds into the brain. A favorable link between perfluorooctane sulfonamide (FOSA) and the development and/or progression of glioma may be implicated by a strong positive correlation (r2 = 0.94; p < 0.01) between RFOSA and Ki-67 (a molecular marker of glioma). However, a causal relationship between RFOSA and glioma incidence were not established in the present study. The present pilot study conducted the first examination of BBB transmission efficiency of PFAS from plasma to brain tissue and highlighted the importance of reducing and/or controlling exposure to PFAS.


Assuntos
Barreira Hematoencefálica , Fluorocarbonos , Humanos , Barreira Hematoencefálica/metabolismo , Projetos Piloto , Fluorocarbonos/sangue , Pessoa de Meia-Idade , Feminino , Adulto , Masculino , Glioma , Idoso , Poluentes Ambientais/sangue , Exposição Ambiental , Ácidos Alcanossulfônicos/sangue , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa