Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 263, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849452

RESUMO

BACKGROUND: Protein content determines the state of cells. The variation in protein abundance is crucial when organisms are in the early stages of heat stress, but the reasons affecting their changes are largely unknown. RESULTS: We quantified 47,535 mRNAs and 3742 proteins in the filling grains of wheat in two different thermal environments. The impact of mRNA abundance and sequence features involved in protein translation and degradation on protein expression was evaluated by regression analysis. Transcription, codon usage and amino acid frequency were the main drivers of changes in protein expression under heat stress, and their combined contribution explains 58.2 and 66.4% of the protein variation at 30 and 40 °C (20 °C as control), respectively. Transcription contributes more to alterations in protein content at 40 °C (31%) than at 30 °C (6%). Furthermore, the usage of codon AAG may be closely related to the rapid alteration of proteins under heat stress. The contributions of AAG were 24 and 13% at 30 and 40 °C, respectively. CONCLUSION: In this study, we analyzed the factors affecting the changes in protein expression in the early stage of heat stress and evaluated their influence.


Assuntos
Resposta ao Choque Térmico , Temperatura Alta , Resposta ao Choque Térmico/genética , Biossíntese de Proteínas , Proteômica , Triticum/genética
2.
Theor Appl Genet ; 134(1): 143-157, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33030571

RESUMO

KEY MESSAGE: GWAS identified stable loci for TGW and stress tolerance in winter wheat based on two sowing conditions, which will provide opportunities for developing new cultivars with high yield and yield stability. Wheat is an important food crop widely cultivated in the world. Breeding new varieties with high yields and superior adaptability is the main goal of modern wheat breeding program. In order to determine the marker-trait associations (MATs), a set of 688 diverse winter wheat accessions were subjected to genome-wide association study (GWAS) using the wheat 90K array. Field trials under normal-sown (NS) and late-sown (LS) conditions were conducted for thousand grain weight (TGW) and stress susceptibility index (SSI) at three different sites across two consecutive years. A total of 179 (NS) and 158 (LS) MATs corresponded with TGW; of these, 16 and 6 stable MATs for TGWNS and TGWLS were identified on chromosomes 1B, 2B, 3A, 3B, 5A, 5B, 5D, 6B, and 7D across at least three environments. Notably, a QTL hot spot controlling TGW under NS and LS conditions was found on chromosome 5A (140-142 cM). Moreover, 8 of 228 stable MATs on chromosomes 4B, 5A, and 5D for SSI were detected. A haplotype block associated with TGW and SSI was located on chromosome 5A at 91 cM, nearby the vernalization gene VRN-A1. Additionally, analysis of wheat varieties from the different eras revealed that the grain weight and stress tolerance are not improved concurrently. Overall, our results provide promising alleles controlling grain weight and stress tolerance (particularly for thermotolerance) for wheat breeders, which can be used in marker-assisted selection for improving grain yield and yield stability in wheat.


Assuntos
Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Triticum/genética , Grão Comestível/genética , Meio Ambiente , Estudos de Associação Genética , Genética Populacional , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico
3.
J Exp Bot ; 69(22): 5531-5545, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30476278

RESUMO

Wheat (Triticum aestivum) is particularly vulnerable to heat stress during the grain filling stage, and this can adversely affect the final yield. However, the underlying physiological and molecular mechanisms are largely unknown. In this study, the effects of heat stress on grain filling were investigated using wheat varieties with different levels of thermotolerance. Decreased grain weights and filling durations, increased protein contents, and stable filling rates across diverse varieties under different heat regimes suggested a general mechanism for heat adaptation. Proteomic analysis identified 309 heat-responsive proteins (HRPs), and revealed a general decrease in protein synthesis components and metabolic proteins, but a significant increase in stress-response proteins and storage proteins. Metabolomic analysis identified 98 metabolites specifically changed by heat stress, and suggested a global decrease in the content of carbohydrate metabolites, an increased content of amino acids, and stable levels of starch synthesis precursors. The energy-consuming HRPs suggested that less energy was channelled into metabolism and protein synthesis, whereas more energy was allocated to the stress response under elevated heat conditions. Collectively, the data demonstrated a widely distributed mechanism for heat adaptation of metabolism, in which the assimilation and energy required for metabolism and protein synthesis are reallocated to heat protection and deposition of reserves, resulting in increased storage protein accumulation and a stable filling rate.


Assuntos
Resposta ao Choque Térmico , Proteínas de Plantas/metabolismo , Triticum/fisiologia , Adaptação Fisiológica , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Proteômica , Triticum/genética , Triticum/crescimento & desenvolvimento
4.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592925

RESUMO

Drought-induced stress poses a significant challenge to wheat throughout its growth, underscoring the importance of identifying drought-stable quantitative trait loci (QTLs) for enhancing grain yield. Here, we evaluated 18 yield-related agronomic and physiological traits, along with their drought tolerance indices, in a recombinant inbred line population derived from the XC7 × XC21 cross. These evaluations were conducted under both non-stress and drought-stress conditions. Drought stress significantly reduced grain weight per spike and grain yield per plot. Genotyping the recombinant inbred line population using the wheat 90K single nucleotide polymorphism array resulted in the identification of 131 QTLs associated with the 18 traits. Drought stress also exerted negative impacts on grain formation and filling, directly leading to reductions in grain weight per spike and grain yield per plot. Among the identified QTLs, 43 were specifically associated with drought tolerance across the 18 traits, with 6 showing direct linkages to drought tolerance in wheat. These results provide valuable insights into the genetic mechanisms governing wheat growth and development, as well as the traits contributing to the drought tolerance index. Moreover, they serve as a theoretical foundation for the development of new wheat cultivars having exceptional drought tolerance and high yield potentials under both drought-prone and drought-free conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa