Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(10): e2303966, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37907423

RESUMO

Multispectral/hyperspectral technologies can easily detect man-made objects in vegetation by subtle spectral differences between the object and vegetation, and powerful reconnaissance increases the demand for camouflage materials closely resembling vegetation spectra. However, previous biomimetic materials have only presented static colors that cannot change color, and camouflage in multiple bands is difficult to achieve. To address this challenge, inspiration is drawn from the color change of foliage, and a color-change model is proposed with active and static pigments embedded in a matrix medium. The color of a composite material is dominated by the colored active pigment, which conceals the color of the static pigments and the color is revealed when the active pigment fades. A color-changing biomimetic material (CCBM) is developed with a solution casting method by adopting microcapsuled thermochromic pigments and chrome titanate yellow pigments as fillers in a base film with polyvinyl alcohol and lithium chloride. A Kubelka-Munk four-flux model is constructed to optimize the component proportions of the CCBM. The material has a reversible color change, closely resembles the foliage spectrum in UV-vis-NIR ranges, and imitates the thermal behavior of natural foliage in the mid-infrared regime. These results provide a novel approach to multispectral and hyperspectral camouflage.

2.
Analyst ; 145(12): 4130-4137, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32421137

RESUMO

Antibodies have now been widely used for clinical treatment of a number of tumors. However, there are serious problems associated with antibody therapy, such as potential interactions of antibodies with the immune system as well as long production cycles. Recently, aptamers have been found to function similar to antibodies in terms of affinity and specificity to certain proteins and are attracting much attention for their low immunogenicity, easy chemical synthesis, and efficient penetration into tissues due to their small size. However, how to access high affinity and selectivity aptamers efficiently for further analysis is still open to be resolved. Herein, an aptamer discovery method that combines the continuous flow ddPCR technology with cytometer sorting of beads is reported, such that we have obtained DNA aptamers binding specifically to PD-1 with an affinity of over 60-fold higher than that for the best-reported method.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Reação em Cadeia da Polimerase/métodos , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica
3.
RSC Adv ; 9(40): 23229-23240, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35514511

RESUMO

The effect of the slip lengths of both continuous and dispersed phases on droplet formation in microfluidic T-junctions is investigated by a volume of fluid method. Results reveal that, in a dripping regime, the droplet size is mainly influenced by the slip length of the continuous phase and increases with it. In a squeezing regime, the droplet size decreases with the slip lengths of both phases. The effects of the slip lengths of both phases on droplet generation are systematically discussed and summarized. The elongation rate of the thread can be decreased with an increase of slip lengths in both dripping and squeezing regimes, which is beneficial to improve droplet monodispersity. The monodispersity of droplets can deteriorate when the slip length of either phase is small and can be improved by increasing the slip length of the other phase.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa