Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; : 174237, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942300

RESUMO

Since the 1980s, there has been increasing concern over heavy metal pollution remediation. However, most research focused on the individual remediation technologies for heavy metal pollutants in either soil or water. Considering the potential migration of these pollutants, it is necessary to explore effective integrated remediation technologies for soil and water heavy metals. This review thoroughly examines non-phytoremediation technologies likes physical, chemical, and microbial remediation, as well as green remediation approaches involving terrestrial and aquatic phytoremediation. Non-phytoremediation technologies suffer from disadvantages like high costs, secondary pollution risks, and susceptibility to environmental factors. Conversely, phytoremediation technologies have gained significant attention due to their sustainable and environmentally friendly nature. Enhancements through chelating agents, biochar, microorganisms, and genetic engineering have demonstrated improved phytoremediation remediation efficiency. However, it is essential to address the environmental and ecological risks that may arise from the prolonged utilization of these materials and technologies. Lastly, this paper presents an overview of integrated remediation approaches for addressing heavy metal contamination in groundwater-soil-surface water systems and discusses the reasons for the research gaps and future directions. This paper offers valuable insights for comprehensive solutions to heavy metal pollution in water and soil, promoting integrated remediation and sustainable development.

2.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014706

RESUMO

The removal of contaminants of emerging concern (CECs) has become a hot research topic in the field of environmental engineering in recent years. In this work, a simple pyrolysis method was designed to prepare a high-performance biochar-loaded zero-valent copper (CuC) material for the catalytic degradation of antibiotics ENR by PMS. The results showed that 10 mg/L of ENR was completely removed within 30 min at an initial pH of 3, CuC 0.3 g/L, and PMS 2 mmol/L. Further studies confirmed that the reactive oxygen species (ROS) involved in ENR degradation are ·OH, SO4-·, 1O2, and O2-. Among them, 1O2 played a major role in degradation, whereas O2-· played a key role in the indirect generation of 1O2. On the one hand, CuC adsorbed and activated PMS to generate ·OH, SO4-· and O2-·. O2-· was unstable and reacted rapidly with H2O and ·OH to generate large amounts of 1O2. On the other hand, both the self-decomposition of PMS and direct activation of PMS by C=O on biochar also generated 1O2. Five byproducts were generated during degradation and eventually mineralized to CO2, H2O, NO3-, and F-. This study provides a facile strategy and new insights into the biochar-loaded zero-valent transition-metal-catalyzed PMS degradation of CECs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa