Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Am J Hum Genet ; 110(9): 1600-1605, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37607539

RESUMO

Recent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate. Furthermore, the Fabry cardiomyocytes displayed significant upregulation of lysosomal-associated proteins. Upon GLA modRNA treatment, a subset of lysosomal proteins were partially restored to wild-type levels, implying the rescue of the molecular phenotype associated with the Fabry genotype. Importantly, a significant reduction of GB3 levels was observed in GLA modRNA-treated cardiomyocytes, demonstrating that α-GAL enzymatic activity was restored. Together, our results validate the utility of iPSC-derived cardiomyocytes from affected individuals as a model to study disease processes in Fabry disease and the therapeutic potential of GLA modRNA treatment to reduce GB3 accumulation in the heart.


Assuntos
Doença de Fabry , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , RNA , Doença de Fabry/genética , Doença de Fabry/terapia , RNA Mensageiro
2.
J Cell Sci ; 135(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36052643

RESUMO

Cell size varies between cell types but is tightly regulated by cell intrinsic and extrinsic mechanisms. Cell size control is important for cell function, and changes in cell size are frequently observed in cancer. Here, we uncover a role for SETD2 in regulating cell size. SETD2 is a lysine methyltransferase and a tumor suppressor protein involved in transcription, RNA processing and DNA repair. At the molecular level, SETD2 is best known for associating with RNA polymerase II through its Set2-Rbp1 interacting (SRI) domain and methylating histone H3 on lysine 36 (H3K36) during transcription. Using multiple independent perturbation strategies, we identify SETD2 as a negative regulator of global protein synthesis rates and cell size. We provide evidence that overexpression of the H3K36 demethylase KDM4A or the oncohistone H3.3K36M also increase cell size. In addition, ectopic overexpression of a decoy SRI domain increased cell size, suggesting that the relevant substrate is engaged by SETD2 via its SRI domain. These data add a central role of SETD2 in regulating cellular physiology and warrant further studies on separating the different functions of SETD2 in cancer development.


Assuntos
Histonas , Neoplasias , Tamanho Celular , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina , Neoplasias/metabolismo , RNA Polimerase II/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
EMBO Rep ; 23(12): e55782, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36245428

RESUMO

Ki-67 is a chromatin-associated protein with a dynamic distribution pattern throughout the cell cycle and is thought to be involved in chromatin organization. The lack of genomic interaction maps has hampered a detailed understanding of its roles, particularly during interphase. By pA-DamID mapping in human cell lines, we find that Ki-67 associates with large genomic domains that overlap mostly with late-replicating regions. Early in interphase, when Ki-67 is present in pre-nucleolar bodies, it interacts with these domains on all chromosomes. However, later in interphase, when Ki-67 is confined to nucleoli, it shows a striking shift toward small chromosomes. Nucleolar perturbations indicate that these cell cycle dynamics correspond to nucleolar maturation during interphase, and suggest that nucleolar sequestration of Ki-67 limits its interactions with larger chromosomes. Furthermore, we demonstrate that Ki-67 does not detectably control chromatin-chromatin interactions during interphase, but it competes with the nuclear lamina for interaction with late-replicating DNA, and it controls replication timing of (peri)centromeric regions. Together, these results reveal a highly dynamic choreography of genome interactions and roles for Ki-67 in heterochromatin organization.


Assuntos
Genômica , Heterocromatina , Humanos , Heterocromatina/genética , Antígeno Ki-67/genética
4.
Mol Cell ; 62(6): 848-861, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27237052

RESUMO

Global demethylation is part of a conserved program of epigenetic reprogramming to naive pluripotency. The transition from primed hypermethylated embryonic stem cells (ESCs) to naive hypomethylated ones (serum-to-2i) is a valuable model system for epigenetic reprogramming. We present a mathematical model, which accurately predicts global DNA demethylation kinetics. Experimentally, we show that the main drivers of global demethylation are neither active mechanisms (Aicda, Tdg, and Tet1-3) nor the reduction of de novo methylation. UHRF1 protein, the essential targeting factor for DNMT1, is reduced upon transition to 2i, and so is recruitment of the maintenance methylation machinery to replication foci. Concurrently, there is global loss of H3K9me2, which is needed for chromatin binding of UHRF1. These mechanisms synergistically enforce global DNA hypomethylation in a replication-coupled fashion. Our observations establish the molecular mechanism for global demethylation in naive ESCs, which has key parallels with those operating in primordial germ cells and early embryos.


Assuntos
Reprogramação Celular , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Histonas/metabolismo , Camundongos , Modelos Genéticos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Tempo , Transfecção , Ubiquitina-Proteína Ligases
5.
Mol Cancer ; 21(1): 125, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681235

RESUMO

BACKGROUND: The dynamic epigenome and proteins specialized in the interpretation of epigenetic marks critically contribute to leukemic pathogenesis but also offer alternative therapeutic avenues. Targeting newly discovered chromatin readers involved in leukemogenesis may thus provide new anticancer strategies. Accumulating evidence suggests that the PRC1 complex member CBX2 is overexpressed in solid tumors and promotes cancer cell survival. However, its role in leukemia is still unclear. METHODS: We exploited reverse genetic approaches to investigate the role of CBX2 in human leukemic cell lines and ex vivo samples. We also analyzed phenotypic effects following CBX2 silencing using cellular and molecular assays and related functional mechanisms by ATAC-seq and RNA-seq. We then performed bioinformatic analysis of ChIP-seq data to explore the influence of histone modifications in CBX2-mediated open chromatin sites. Lastly, we used molecular assays to determine the contribution of CBX2-regulated pathways to leukemic phenotype. RESULTS: We found CBX2 overexpressed in leukemia both in vitro and ex vivo samples compared to CD34+ cells. Decreased CBX2 RNA levels prompted a robust reduction in cell proliferation and induction of apoptosis. Similarly, sensitivity to CBX2 silencing was observed in primary acute myeloid leukemia samples. CBX2 suppression increased genome-wide chromatin accessibility followed by alteration of leukemic cell transcriptional programs, resulting in enrichment of cell death pathways and downregulation of survival genes. Intriguingly, CBX2 silencing induced epigenetic reprogramming at p38 MAPK-associated regulatory sites with consequent deregulation of gene expression. CONCLUSIONS: Our results identify CBX2 as a crucial player in leukemia progression and highlight a potential druggable CBX2-p38 MAPK network in AML.


Assuntos
Cromatina , Leucemia Mieloide Aguda , Complexo Repressor Polycomb 1 , Cromatina/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Mol Cell Proteomics ; 13(7): 1814-27, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24742827

RESUMO

Ferritin heavy chain (FTH1) is a 21-kDa subunit of the ferritin complex, known for its role in iron metabolism, and which has recently been identified as a favorable prognostic protein for triple negative breast cancer (TNBC) patients. Currently, it is not well understood how FTH1 contributes to an anti-tumor response. Here, we explored whether expression and cellular compartmentalization of FTH1 correlates to an effective immune response in TNBC patients. Analysis of the tumor tissue transcriptome, complemented with in silico pathway analysis, revealed that FTH1 was an integral part of an immunomodulatory network of cytokine signaling, adaptive immunity, and cell death. These findings were confirmed using mass spectrometry (MS)-derived proteomic data, and immunohistochemical staining of tissue microarrays. We observed that FTH1 is localized in both the cytoplasm and/or nucleus of cancer cells. However, high cytoplasmic (c) FTH1 was associated with favorable prognosis (Log-rank p = 0.001), whereas nuclear (n) FTH1 staining was associated with adverse prognosis (Log-rank p = 0.019). cFTH1 staining significantly correlated with total FTH1 expression in TNBC tissue samples, as measured by MS analysis (Rs = 0.473, p = 0.0007), but nFTH1 staining did not (Rs = 0.197, p = 0.1801). Notably, IFN γ-producing CD8+ effector T cells, but not CD4+ T cells, were preferentially enriched in tumors with high expression of cFTH1 (p = 0.02). Collectively, our data provide evidence toward new immune regulatory properties of FTH1 in TNBC, which may facilitate development of novel therapeutic targets.


Assuntos
Apoferritinas/metabolismo , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos/imunologia , Ferritinas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Adulto , Idoso , Apoferritinas/biossíntese , Apoferritinas/imunologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Ferritinas/biossíntese , Ferritinas/imunologia , Humanos , Interferon gama/biossíntese , Interferon gama/imunologia , Pessoa de Meia-Idade , Oxirredutases , Prognóstico , Mapas de Interação de Proteínas , Proteômica , Análise Serial de Tecidos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/mortalidade
8.
J Proteome Res ; 12(10): 4627-41, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23957277

RESUMO

Quantitative proteomics plays an important role in validation of breast-cancer-related biomarkers. In this study, we systematically compared the performance of label-free quantification (LFQ) and SILAC with shotgun and directed methods for quantifying breast-cancer-related markers in microdissected tissues. We show that LFQ leads to slightly higher coefficient of variation (CV) for protein quantification (median CV = 16.3%) than SILAC quantification (median CV = 13.7%) (P < 0.0001), but LFQ method enables ∼60% more protein quantification and is also more reproducible (∼20% more proteins were quantified in all replicate samples). Furthermore, we describe a method to accurately quantify multiple proteins within one pathway, that is, "focal adhesion pathway", in trace amounts of breast cancer tissues using a SILAC-based SRM assay. Using this SILAC-based SRM assay, we precisely quantified five "focal adhesion" proteins with good quantitative precision (CV range: 2.4-5.9%) in replicate whole tissue lysate samples and replicate microdissected samples (CV range: 5.8-16.1%). Our results show that in microdissected breast cancer tissues LFQ in combination with shotgun proteomics performed the best overall and is therefore suitable for both biomarker discovery and validation in these types of specimens. The SILAC-based SRM method can be used for the development of clinically relevant protein assays in tumor biopsies.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Biomarcadores Tumorais/química , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Feminino , Adesões Focais/metabolismo , Humanos , Marcação por Isótopo , Microdissecção e Captura a Laser , Dados de Sequência Molecular , Proteoma/química , Proteômica , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/normas
9.
J Mammary Gland Biol Neoplasia ; 17(2): 155-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22644111

RESUMO

Mass spectrometry (MS)-based label-free proteomics offers an unbiased approach to screen biomarkers related to disease progression and therapy-resistance of breast cancer on the global scale. However, multi-step sample preparation can introduce large variation in generated data, while inappropriate statistical methods will lead to false positive hits. All these issues have hampered the identification of reliable protein markers. A workflow, which integrates reproducible and robust sample preparation and data handling methods, is highly desirable in clinical proteomics investigations. Here we describe a label-free tissue proteomics pipeline, which encompasses laser capture microdissection (LCM) followed by nanoscale liquid chromatography and high resolution MS. This pipeline routinely identifies on average ∼10,000 peptides corresponding to ∼1,800 proteins from sub-microgram amounts of protein extracted from ∼4,000 LCM breast cancer epithelial cells. Highly reproducible abundance data were generated from different technical and biological replicates. As a proof-of-principle, comparative proteome analysis was performed on estrogen receptor α positive or negative (ER+/-) samples, and commonly known differentially expressed proteins related to ER expression in breast cancer were identified. Therefore, we show that our tissue proteomics pipeline is robust and applicable for the identification of breast cancer specific protein markers.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Regulação para Baixo , Glândulas Mamárias Humanas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteômica/métodos , Regulação para Cima , Biomarcadores Tumorais/química , Neoplasias da Mama/patologia , Separação Celular/métodos , Epitélio/metabolismo , Epitélio/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Microdissecção e Captura a Laser , Glândulas Mamárias Humanas/patologia , Proteínas de Neoplasias/química , Mapeamento de Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/química , Receptores de Progesterona/metabolismo , Células Tumorais Cultivadas
10.
Nat Commun ; 14(1): 7762, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040699

RESUMO

Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis.


Assuntos
Tumor Rabdoide , Humanos , Criança , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Fatores de Transcrição/genética , Mutação , Regiões Promotoras Genéticas/genética , Carcinogênese/genética
11.
Cell Rep ; 42(10): 113124, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37733591

RESUMO

Acquired drug resistance is a major problem in the treatment of cancer. hTERT-immortalized, untransformed RPE-1 cells can acquire resistance to Taxol by derepressing the ABCB1 gene, encoding for the multidrug transporter P-gP. Here, we investigate how the ABCB1 gene is derepressed. ABCB1 activation is associated with reduced H3K9 trimethylation, increased H3K27 acetylation, and ABCB1 displacement from the nuclear lamina. While altering DNA methylation and H3K27 methylation had no major impact on ABCB1 expression, nor did it promote resistance, disrupting the nuclear lamina component Lamin B Receptor did promote the acquisition of a Taxol-resistant phenotype in a subset of cells. CRISPRa-mediated gene activation supported the notion that lamina dissociation influences ABCB1 derepression. We propose a model in which nuclear lamina dissociation of a repressed gene allows for its activation, implying that deregulation of the 3D genome topology could play an important role in tumor evolution and the acquisition of drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Paclitaxel/farmacologia , Resistência a Múltiplos Medicamentos/genética , Neoplasias/genética , Metilação de DNA/genética , Linhagem Celular Tumoral
12.
Planta Med ; 78(9): 926-33, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22538475

RESUMO

Radix Bupleuri is a traditional Chinese medicine harvested from two Bupleurum species (B. chinense and B. scorzonerifolium). It is widely used and is sourced from different regions of China. 1H NMR spectroscopy and multivariate data analysis were applied to 67 Radix Bupleuri samples to discriminate the two species, and explore the influences of habitat and culture method on the quality of Radix Bupleuri based on their metabolomics profiles. Metabolites responsible for the differences between the two species were higher levels of arginine, citric acid, sucrose, saikosaponin b1/b2 analogs, volatile oil with an (E)-2-olefin aldehyde fragment, and fatty acids in B. scoreonerifolium, and more saikosaponin a/c/d analogs in B. chinense. The variances of two cultivation areas were observed due to the higher amount of saikosaponins a/c/d in samples from Shaanxi and lipidsin samples from Shanxi. No obvious difference was detected between cultivars and wild type. 1HNMR metabolomics can simultaneously detect saikosaponins and hydrocarbon aldehydes, and also differentiate the two main saikosaponin skeletons, making it a suitable tool for the species discrimination and quality evaluation of Radix Bupleuri.


Assuntos
Bupleurum/química , Bupleurum/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Arginina/análise , Arginina/metabolismo , China , Ácido Cítrico/análise , Ácido Cítrico/metabolismo , Medicina Tradicional Chinesa , Metabolômica/métodos , Análise Multivariada , Óleos Voláteis/análise , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/análise , Ácido Oleanólico/metabolismo , Filogeografia , Análise de Componente Principal , Saponinas/análise , Saponinas/metabolismo , Sacarose/análise , Sacarose/metabolismo
13.
Methods Mol Biol ; 2532: 311-331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867256

RESUMO

The organization of the genome inside the nucleus facilitates many nuclear processes. Because the nuclear genome is highly dynamic and often regulated by essential proteins, rapid depletion strategies are necessary to perform loss-of-function analyses. Fortunately, in recent years, various methods have been developed to manipulate the cellular levels of a protein directly and acutely. Here, we describe different methods that have been developed to rapidly deplete proteins from cells, with a focus on auxin inducible degron and dTAG methods, as these are most commonly used in 3D genome organization studies. We outline best practices for designing a knockin strategy, as well as generation and validation of knockin cell lines. Acute depletion strategies have been transformative for the study of the 3D genome and will be important tools for delineating the processes and factors that determine organization of the genome inside the nucleus.


Assuntos
Ácidos Indolacéticos , Proteínas , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Genoma , Ácidos Indolacéticos/metabolismo , Proteínas/metabolismo , Proteólise
14.
Genome Biol ; 23(1): 185, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050765

RESUMO

BACKGROUND: Lamina-associated domains (LADs) are large genomic regions that are positioned at the nuclear lamina. It has remained largely unclear what drives the positioning and demarcation of LADs. Because the insulator protein CTCF is enriched at LAD borders, it was postulated that CTCF binding could position some LAD boundaries, possibly through its function in stalling cohesin and hence preventing cohesin invading into the LAD. To test this, we mapped genome-nuclear lamina interactions in mouse embryonic stem cells after rapid depletion of CTCF and other perturbations of cohesin dynamics. RESULTS: CTCF and cohesin contribute to a sharp transition in lamina interactions at LAD borders, while LADs are maintained after depletion of these proteins, also at borders marked by CTCF. CTCF and cohesin may thus reinforce LAD borders, but do not position these. CTCF binding sites within LADs are locally detached from the lamina and enriched for accessible DNA and active histone modifications. Remarkably, despite lamina positioning being strongly correlated with genome inactivity, this DNA remains accessible after the local detachment is lost following CTCF depletion. At a chromosomal scale, cohesin depletion and cohesin stabilization by depletion of the unloading factor WAPL quantitatively affect lamina interactions, indicative of perturbed chromosomal positioning in the nucleus. Finally, while H3K27me3 is locally enriched at CTCF-marked LAD borders, we find no evidence for an interplay between CTCF and H3K27me3 on lamina interactions. CONCLUSIONS: These findings illustrate that CTCF and cohesin are not primary determinants of LAD patterns. Rather, these proteins locally modulate NL interactions.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas , Lâmina Nuclear , Animais , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , DNA/metabolismo , Histonas/metabolismo , Camundongos , Lâmina Nuclear/química , Coesinas
15.
Nat Genet ; 53(1): 100-109, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33318687

RESUMO

The cohesin complex has an essential role in maintaining genome organization. However, its role in gene regulation remains largely unresolved. Here we report that the cohesin release factor WAPL creates a pool of free cohesin, in a process known as cohesin turnover, which reloads it to cell-type-specific binding sites. Paradoxically, stabilization of cohesin binding, following WAPL ablation, results in depletion of cohesin from these cell-type-specific regions, loss of gene expression and differentiation. Chromosome conformation capture experiments show that cohesin turnover is important for maintaining promoter-enhancer loops. Binding of cohesin to cell-type-specific sites is dependent on the pioneer transcription factors OCT4 (POU5F1) and SOX2, but not NANOG. We show the importance of cohesin turnover in controlling transcription and propose that a cycle of cohesin loading and off-loading, instead of static cohesin binding, mediates promoter and enhancer interactions critical for gene regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/genética , Linhagem Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Camundongos , Modelos Biológicos , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Coesinas
16.
Phytochem Anal ; 21(5): 451-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20310073

RESUMO

INTRODUCTION: Since the discovery of artemisinin in the 1970s, many techniques based on diverse chromatography techniques have been developed to detect and quantify this important antiplasmodial compound. The accurate quantification of this compound in the Artemisia annua plant material is mainly needed for breeding purposes in order to cultivate higher yielding varieties. It is also important for the quality control of herbal preparations containing A. annua plant material. OBJECTIVE: To evaluate the most common validated quantification techniques (LC-MS, HPLC-ELSD and TLC) and compare the results to quantitative nuclear magnetic resonance spectroscopy (qNMR) in eight different A. annua samples collected from around the world. METHODOLOGY: The leaf material were extracted according to standard procedures and analysed with the validated quantification techniques. For the qNMR analysis we did not employ a standard curve but instead used an internal standard (maleid acid) which is not chemically related to artemisinin. RESULTS: We found a significant difference between the results in this study. Compared with the qNMR results the HPLC-ELSD corresponded closely, followed by LC-MS. Quantitation with TLC led to an estimation range of -0.5 to +3.2 mg artemisinin/g of A. annua. CONCLUSION: These results imply that qNMR, with the addition of an internal standard, can be used to quantify artemisinin in A. annua samples in a rapid and reproducible manner.


Assuntos
Antimaláricos/análise , Artemisia annua/química , Artemisininas/análise , Calibragem , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
17.
Cell Death Dis ; 10(5): 338, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000698

RESUMO

Leukemia is characterized by genetic and epigenetic mutations resulting in selection of cancer cells, which are unable to differentiate. Although genetic alterations are difficult to target, the epigenome is intrinsically dynamic and readily offers new therapeutic strategies. Thus, identifying cancer-specific context-dependent targets and unraveling their biological function may open up new therapeutic perspectives. Here we identify bromodomain-containing protein 9 (BRD9) as a critical target required in acute myeloid leukemia (AML). We show that BRD9 is overexpressed in AML cells including ex vivo primary blasts compared with CD34+ cells. By targeting BRD9 expression in AML, we observed an alteration in proliferation and survival, ultimately resulting in the induction of apoptosis. Intriguingly, genome-wide profiling revealed that BRD9 binds enhancer regions in a cell type-specific manner, regulating cell type-related processes. We unveil a novel BRD9-sustained STAT5 pathway activation via regulation of SOCS3 expression levels. Our findings identify a previously undescribed BRD9-STAT5 axis as critical for leukemia maintenance, suggesting BRD9 as a potential therapeutic target.


Assuntos
Cromatina/metabolismo , Leucemia Mieloide Aguda/patologia , Fator de Transcrição STAT5/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antígenos CD34/metabolismo , Proliferação de Células , Sobrevivência Celular , Células HeLa , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT5/antagonistas & inibidores , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcriptoma , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/antagonistas & inibidores
18.
Cancers (Basel) ; 11(12)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888209

RESUMO

In breast cancer, Lysine-specific demethylase-1 (LSD1) and other lysine demethylases (KDMs), such as Lysine-specific demethylase 6A also known as Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), are co-expressed and co-localize with estrogen receptors (ERs), suggesting the potential use of hybrid (epi)molecules to target histone methylation and therefore regulate/redirect hormone receptor signaling. Here, we report on the biological activity of a dual-KDM inhibitor (MC3324), obtained by coupling the chemical properties of tranylcypromine, a known LSD1 inhibitor, with the 2OG competitive moiety developed for JmjC inhibition. MC3324 displays unique features not exhibited by the single moieties and well-characterized mono-pharmacological inhibitors. Inhibiting LSD1 and UTX, MC3324 induces significant growth arrest and apoptosis in hormone-responsive breast cancer model accompanied by a robust increase in H3K4me2 and H3K27me3. MC3324 down-regulates ERα in breast cancer at both transcriptional and non-transcriptional levels, mimicking the action of a selective endocrine receptor disruptor. MC3324 alters the histone methylation of ERα-regulated promoters, thereby affecting the transcription of genes involved in cell surveillance, hormone response, and death. MC3324 reduces cell proliferation in ex vivo breast cancers, as well as in breast models with acquired resistance to endocrine therapies. Similarly, MC3324 displays tumor-selective potential in vivo, in both xenograft mice and chicken embryo models, with no toxicity and good oral efficacy. This epigenetic multi-target approach is effective and may overcome potential mechanism(s) of resistance in breast cancer.

19.
Nat Commun ; 8: 14418, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195176

RESUMO

Genome-wide association studies have identified a great number of non-coding risk variants for colorectal cancer (CRC). To date, the majority of these variants have not been functionally studied. Identification of allele-specific transcription factor (TF) binding is of great importance to understand regulatory consequences of such variants. A recently developed proteome-wide analysis of disease-associated SNPs (PWAS) enables identification of TF-DNA interactions in an unbiased manner. Here we perform a large-scale PWAS study to comprehensively characterize TF-binding landscape that is associated with CRC, which identifies 731 allele-specific TF binding at 116 CRC risk loci. This screen identifies the A-allele of rs1800734 within the promoter region of MLH1 as perturbing the binding of TFAP4 and consequently increasing DCLK3 expression through a long-range interaction, which promotes cancer malignancy through enhancing expression of the genes related to epithelial-to-mesenchymal transition.


Assuntos
Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Progressão da Doença , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Alelos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA , Quinases Semelhantes a Duplacortina , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteína 1 Homóloga a MutL/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteoma , Proteômica , Fatores de Transcrição
20.
Mol Oncol ; 10(1): 24-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26285647

RESUMO

Estrogen receptor (ER) positive tumors represent the majority of breast malignancies, and are effectively treated with hormonal therapies, such as tamoxifen. However, in the recurrent disease resistance to tamoxifen therapy is common and a major cause of death. In recent years, in-depth proteome analyses have enabled identification of clinically useful biomarkers, particularly, when heterogeneity in complex tumor tissue was reduced using laser capture microdissection (LCM). In the current study, we performed high resolution proteomic analysis on two cohorts of ER positive breast tumors derived from patients who either manifested good or poor outcome to tamoxifen treatment upon recurrence. A total of 112 fresh frozen tumors were collected from multiple medical centers and divided into two sets: an in-house training and a multi-center test set. Epithelial tumor cells were enriched with LCM and analyzed by nano-LC Orbitrap mass spectrometry (MS), which yielded >3000 and >4000 quantified proteins in the training and test sets, respectively. Raw data are available via ProteomeXchange with identifiers PXD000484 and PXD000485. Statistical analysis showed differential abundance of 99 proteins, of which a subset of 4 proteins was selected through a multivariate step-down to develop a predictor for tamoxifen treatment outcome. The 4-protein signature significantly predicted poor outcome patients in the test set, independent of predictive histopathological characteristics (hazard ratio [HR] = 2.17; 95% confidence interval [CI] = 1.15 to 4.17; multivariate Cox regression p value = 0.017). Immunohistochemical (IHC) staining of PDCD4, one of the signature proteins, on an independent set of formalin-fixed paraffin-embedded tumor tissues provided and independent technical validation (HR = 0.72; 95% CI = 0.57 to 0.92; multivariate Cox regression p value = 0.009). We hereby report the first validated protein predictor for tamoxifen treatment outcome in recurrent ER-positive breast cancer. IHC further showed that PDCD4 is an independent marker.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Tamoxifeno/uso terapêutico , Feminino , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/classificação , Recidiva Local de Neoplasia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa