Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Diabetes ; 15(3): 162-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24827702

RESUMO

Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4⁺ and CD8⁺ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting ß-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.


Assuntos
Autoimunidade , Citotoxicidade Imunológica , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Modelos Biológicos , Animais , Autoanticorpos/análise , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Prognóstico
2.
Nat Nanotechnol ; 12(7): 701-710, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28436959

RESUMO

We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.


Assuntos
Autoimunidade , Antígenos de Histocompatibilidade , Nanomedicina/métodos , Nanopartículas/química , Peptídeos , Linfócitos T Reguladores/imunologia , Animais , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/imunologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Peptídeos/química , Peptídeos/imunologia , Linfócitos T Reguladores/patologia
3.
Nat Genet ; 46(9): 1028-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25129145

RESUMO

Neutrophils are key innate immune effector cells that are essential to fighting bacterial and fungal pathogens. Here we report that mice carrying a hematopoietic lineage-specific deletion of Jagn1 (encoding Jagunal homolog 1) cannot mount an efficient neutrophil-dependent immune response to the human fungal pathogen Candida albicans. Global glycobiome analysis identified marked alterations in the glycosylation of proteins involved in cell adhesion and cytotoxicity in Jagn1-deficient neutrophils. Functional analysis confirmed marked defects in neutrophil migration in response to Candida albicans infection and impaired formation of cytotoxic granules, as well as defective myeloperoxidase release and killing of Candida albicans. Treatment with granulocyte/macrophage colony-stimulating factor (GM-CSF) protected mutant mice from increased weight loss and accelerated mortality after Candida albicans challenge. Notably, GM-CSF also restored the defective fungicidal activity of bone marrow cells from humans with JAGN1 mutations. These data directly identify Jagn1 (JAGN1 in humans) as a new regulator of neutrophil function in microbial pathogenesis and uncover a potential treatment option for humans.


Assuntos
Candidíase/imunologia , Proteínas de Membrana/imunologia , Neutrófilos/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/metabolismo , Candidíase/microbiologia , Glicosilação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Neutrófilos/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa