Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688047

RESUMO

Moisture content is an important parameter for estimating the quality of pellet feed, which is vital in nutrition, storage, and taste. The ranges of moisture content serve as an index for factors such as safe storage and nutrition stability. A rapid and non-destructive model for the measurement of moisture content in pellet feed was developed. To achieve this, 144 samples of Caragana korshinskii pellet feed from various regions in Inner Mongolia Autonomous Region underwent separate moisture content control, measurement using standard methods, and captured their images using a hyperspectral imaging (HSI) system in the spectral range of 935.5-2539 nm. The Monte Carlo cross validation (MCCV) was used to eliminate abnormal sample data from the spectral data for better model accuracy, and a global model of moisture content was built by using partial least squares regression (PLSR) with seven preprocessing techniques and two spectral feature extraction techniques. The results showed that the regression model developed by PLSR based on second derivative (SD) and competitive adaptive reweighted sampling (CARS) resulted in better performance for moisture content. The model showed predictive abilities for moisture content with a coefficient of determination of 0.9075 and a root mean square error (RMSE) of 0.4828 for the training set; and a coefficient of determination of 0.907 and a root mean square error (RMSE) of 0.5267 for the test set; and a relative prediction error of 3.3 and the standard error of 0.307.


Assuntos
Caragana , Imageamento Hiperespectral , China , Método de Monte Carlo , Estado Nutricional
2.
Front Bioeng Biotechnol ; 11: 1241151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744255

RESUMO

Introduction: Triply periodic minimal surface (TPMS) is widely used in the design of bone scaffolds due to its structural advantages. However, the current approach to designing bone scaffolds using TPMS structures is limited to a forward process from microstructure to mechanical properties. Developing an inverse bone scaffold design method based on the mechanical properties of bone structures is crucial. Methods: Using the machine learning and genetic algorithm, a new inverse design model was proposed in this research. The anisotropy of bone was matched by changing the number of cells in different directions. The finite element (FE) method was used to calculate the TPMS configuration and generate a back propagation neural network (BPNN) data set. Neural networks were used to establish the relationship between microstructural parameters and the elastic matrix of bone. This relationship was then used with regenerative genetic algorithm (RGA) in inverse design. Results: The accuracy of the BPNN-RGA model was confirmed by comparing the elasticity matrix of the inverse-designed structure with that of the actual bone. The results indicated that the average error was below 3.00% for three mechanical performance parameters as design targets, and approximately 5.00% for six design targets. Discussion: The present study demonstrated the potential of combining machine learning with traditional optimization method to inversely design anisotropic TPMS bone scaffolds with target mechanical properties. The BPNN-RGA model achieves higher design efficiency, compared to traditional optimization methods. The entire design process is easily controlled.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38017708

RESUMO

Analysis of the musculoskeletal movements (gait analysis) is needed in many scenarios. The in vivo method has some difficulties. For example, recruiting human subjects for the gait analysis is challenging due to many issues. In addition, when plenty of subjects are required, the follow-up experiments take a long period and the dropout of subjects always occurs. An efficient and reliable in silico simulation platform for gait analysis has been desired for a long time. Therefore, a technique using three-dimensional (3D) muscle modeling to drive the 3D musculoskeletal model was developed and the application of the technique in the simulation of lower limb movements was demonstrated. A finite element model of the lower limb with anatomically high fidelity was developed from the MRI data, where the main muscles, the bones, the subcutaneous tissues, and the skin were reconstructed. To simulate the active behavior of 3D muscles, an active, fiber-reinforced hyperelastic muscle model was developed using the user-defined material (VUMAT) model. Two typical movements, that is, hip abduction and knee lifting, were simulated by activating the responsible muscles. The results show that it is reasonable to use the improved CFD-FE method proposed in the present study to simulate the active contraction of the muscle, and it is feasible to simulate the movements by activating the relevant muscles. The results from the present technique closely match the physiological scenario and thus the technique developed has a great potential to be used in the in silico human simulation platform for many purposes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa