Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 71(1): 188-203, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563949

RESUMO

Abscisic acid (ABA) regulates numerous developmental processes and drought tolerance in plants. Calcium-dependent protein kinases (CPKs) are important Ca2+ sensors playing crucial roles in plant growth and development as well as responses to stresses. However, the molecular mechanisms of many CPKs in ABA signaling and drought tolerance remain largely unknown. Here we combined protein interaction studies, and biochemical and genetic approaches to identify and characterize substrates that were phosphorylated by CPK6 and elucidated the mechanism that underlines the role of CPK6 in ABA signaling and drought tolerance. The expression of CPK6 is induced by ABA and dehydration. Two cpk6 T-DNA insertion mutants are insensitive to ABA during seed germination and root elongation of seedlings; in contrast, overexpression of CPK6 showed the opposite phenotype. Moreover, CPK6-overexpressing lines showed enhanced drought tolerance. CPK6 interacts with and phosphorylates a subset of core ABA signaling-related transcription factors, ABA-responsive element-binding factors (ABFs/AREBs), and enhances their transcriptional activities. The phosphorylation sites in ABF3 and ABI5 were also identified through MS and mutational analyses. Taken together, we present evidence that CPK6 mediates ABA signaling and drought tolerance through phosphorylating ABFs/AREBs. This work thus uncovers a rather conserved mechanism of calcium-dependent Ser/Thr kinases in ABA signaling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Secas , Fosforilação
2.
Biochem Biophys Res Commun ; 467(3): 467-71, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26462466

RESUMO

Calcium is a ubiquitous intracellular secondary messenger in eukaryotes. Upon stress challenge, cytosolic Ca(2+) fluctuation could be sensed and bound by calcineurin B-like proteins (CBLs), which further regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs) to relay the signal and induce cellular responses. Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in rapeseed. In the present study, we characterized CBL4 gene from rapeseed. We found that CBL4 is localized at the plasma membrane and it interacted with CIPK24 in both yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Unlike the orthologs in Arabidopsis, rapeseed CIPK24 did not interact with CBL10. Furthermore, expression of rapeseed CBL4 rescued the salt-sensitive phenotype of sos3-1 mutant and overexpression of rapeseed CBL4 in Arabidopsis showed enhanced tolerance of salt stress than wild-type. Overall, the results clarified the function of CBL4 in rapeseed.


Assuntos
Adaptação Fisiológica , Brassica rapa/metabolismo , Proteínas de Plantas/metabolismo , Cloreto de Sódio , Brassica rapa/fisiologia , Genes de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Ligação Proteica , Frações Subcelulares/metabolismo
3.
Biochem Biophys Res Commun ; 467(4): 792-7, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26498521

RESUMO

MAPKKK is the largest family of MAPK cascade, which is known to play important roles in plant growth, development and immune responses. So far, only a few have been functionally characterized even in the model plant, Arabidopsis due to the potential functional redundancy of MAPKKK. We previously identified and cloned a few MAPKKK family genes from rapeseed. In this study, BnaMAPKKK4 was characterized as a member in eliciting accumulation of reactive oxygen species (ROS) and hypersensitive response (HR)-like cell death. This is accompanied with accumulation of malondialdehyde (MDA), anthocyanin as well as nuclear DNA fragmentation. The transcript abundance of a series of ROS accumulation, cell death, and defense response related genes were up-regulated by the expression of MAPKKK4. Further investigation identified BnaMAPKKK4 elicited ROS through the downstream MPK3. These results indicate that BnaMAPKKK4 and its downstream components function in the ROS-induced cell death.


Assuntos
Brassica napus/metabolismo , MAP Quinase Quinase Quinase 4/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Brassica napus/citologia , Brassica napus/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , MAP Quinase Quinase Quinase 4/genética , Filogenia , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Nicotiana/genética
4.
BMC Genomics ; 15: 211, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24646378

RESUMO

BACKGROUND: Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a well-known ubiquitous intracellular secondary messenger in plants. Calcium-dependent protein kinases (CPKs) are Ser/Thr protein kinases found only in plants and some protozoans. CPKs are Ca2+ sensors that have both Ca2+ sensing function and kinase activity within a single protein and play crucial roles in plant development and responses to various environmental stresses. RESULTS: In this study, we mined the available expressed sequence tags (ESTs) of B. napus and identified a total of 25 CPK genes, among which cDNA sequences of 23 genes were successfully cloned from a double haploid cultivar of canola. Phylogenetic analysis demonstrated that they could be clustered into four subgroups. The subcellular localization of five selected BnaCPKs was determined using green fluorescence protein (GFP) as the reporter. Furthermore, the expression levels of 21 BnaCPK genes in response to salt, drought, cold, heat, abscisic acid (ABA), low potassium (LK) and oxidative stress were studied by quantitative RT-PCR and were found to respond to multiple stimuli, suggesting that canola CPKs may be convergence points of different signaling pathways. We also identified and cloned five and eight Clade A basic leucine zipper (bZIP) and protein phosphatase type 2C (PP2C) genes from canola and, using yeast two-hybrid and bimolecular fluorescence complementation (BiFC), determined the interaction between individual BnaCPKs and BnabZIPs or BnaPP2Cs (Clade A). We identified novel, interesting interaction partners for some of the BnaCPK proteins. CONCLUSION: We present the sequences and characterization of CPK gene family members in canola for the first time. This work provides a foundation for further crop improvement and improved understanding of signal transduction in plants.


Assuntos
Brassica napus/enzimologia , Brassica napus/genética , Regulação Enzimológica da Expressão Gênica , Proteínas de Plantas/genética , Proteínas Quinases/genética , Ácido Abscísico/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Brassica napus/metabolismo , Secas , Etiquetas de Sequências Expressas , Genoma de Planta , Dados de Sequência Molecular , Estresse Oxidativo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 2C , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sais/farmacologia , Temperatura , Transcriptoma/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido
5.
Biochem Biophys Res Commun ; 450(4): 1679-83, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25058458

RESUMO

Calcium is a ubiquitous intracellular secondary messenger in plants. Calcineurin B-like proteins (CBLs), which contain four Ca(2+)-binding EF hand motifs, are Ca(2+) sensors and regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs). Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in glucose signaling. In the present study, we identified CIPK14 gene from Arabidopsis that play a role in glucose signaling. The subcellular localization of CIPK14 was determined using green fluorescence protein (GFP) as the reporter. Furthermore, the expression levels of CIPK14 in response to salt, drought, cold, heat, ABA, methyl viologen (MV) and glucose treatments were examined by quantitative RT-PCR and it was found to respond to multiple stimuli, suggesting that CIPK14 may be a point of convergence for several different signaling pathways. Moreover, knock-out mutation of CIPK14 rendered it more sensitive to glucose treatment. Yeast two-hybrid assay demonstrated that CIPK14 interacted with three CBLs and also with two key kinases, sucrose non-fermenting 1-related kinase (SnRK) 1.1 and SnRK1.2 implicated in glucose signaling. This is the first report to demonstrate that CIPK also plays a role in glucose signaling.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Glucose/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Frações Subcelulares , Técnicas do Sistema de Duplo-Híbrido
6.
BMC Plant Biol ; 14: 8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24397480

RESUMO

BACKGROUND: Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a ubiquitous intracellular secondary messenger in plants. Calcineurin B-like proteins (CBLs) are Ca2+ sensors and regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs). Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in canola. RESULTS: In the present study, we identified seven CBL and 23 CIPK genes from canola by database mining and cloning of cDNA sequences of six CBLs and 17 CIPKs. Phylogenetic analysis of CBL and CIPK gene families across a variety of species suggested genome duplication and diversification. The subcellular localization of three BnaCBLs and two BnaCIPKs were determined using green fluorescence protein (GFP) as the reporter. We also demonstrated interactions between six BnaCBLs and 17 BnaCIPKs using yeast two-hybrid assay, and a subset of interactions were further confirmed by bimolecular fluorescence complementation (BiFC). Furthermore, the expression levels of six selected BnaCBL and 12 BnaCIPK genes in response to salt, drought, cold, heat, ABA, methyl viologen (MV) and low potassium were examined by quantitative RT-PCR and these CBL or CIPK genes were found to respond to multiple stimuli, suggesting that the canola CBL-CIPK network may be a point of convergence for several different signaling pathways. We also performed a comparison of interaction patterns and expression profiles of CBL and CIPK in Arabidospsis, canola and rice, to examine the differences between orthologs, highlighting the importance of studying CBL-CIPK in canola as a prerequisite for improvement of this crop. CONCLUSIONS: Our findings indicate that CBL and CIPK family members may form a dynamic complex to respond to different abiotic or hormone signaling. Our comparative analyses of the CBL-CIPK network between canola, Arabidopsis and rice highlight functional differences and the necessity to study CBL-CIPK gene functions in canola. Our data constitute a valuable resource for CBL and CPK genomics.


Assuntos
Brassica napus/metabolismo , Brassica napus/classificação , Brassica napus/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
7.
DNA Res ; 23(2): 101-14, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26800702

RESUMO

The R2R3-MYB proteins comprise one of the largest families of transcription factors in plants. Although genome-wide analysis of this family has been carried out in some plant species, little is known about R2R3-MYB genes in canola (Brassica napus L.). In this study, we have identified 76 R2R3-MYB genes in the canola genome through mining of expressed sequence tags (ESTs). The cDNA sequences of 44 MYB genes were successfully cloned. The transcriptional activities of BnaMYB proteins encoded by these genes were assayed in yeast. The subcellular localizations of representative R2R3-MYB proteins were investigated through GFP fusion. Besides, the transcript abundance level analysis during abiotic conditions and ABA treatment identified a group of R2R3-MYB genes that responded to one or more treatments. Furthermore, we identified a previously functionally unknown MYB gene-BnaMYB78, which modulates reactive oxygen species (ROS)-dependent cell death in Nicotiana benthamiana, through regulating the transcription of a few ROS- and defence-related genes. Taken together, this study has provided a solid foundation for understanding the roles and regulatory mechanism of canola R2R3-MYB genes.


Assuntos
Brassica napus/metabolismo , Morte Celular , Genes myb/genética , Família Multigênica , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Brassica napus/genética , Brassica napus/fisiologia , Clonagem Molecular , DNA Complementar , Etiquetas de Sequências Expressas , Filogenia , Proteínas de Plantas/genética , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa