RESUMO
Polycystic ovary syndrome (PCOS) is a common endocrine disorder related to psychological distress. However, the mechanism underlying increased prevalence of depression in PCOS remained unclear. This study aimed to explore the unique transcriptional landscape of ovary and offered a platform to explore the mechanism of PCOS, as well as the influences caused by depression. The PCOS rat model was established by letrozole whereas PCOS rat model with depression was established by letrozole combined with chronic unpredicted mild stress (CUMS). Then single-cell RNA sequencing (scRNA-Seq) was applied to analyze the transcriptional features of rat ovaries. Granulosa cells (GCs) and fibroblasts (Fibros) accounted for the top two clusters of total 12 cell types. There were nine clusters in GCs, related to inflammatory response, endoplasmic reticulum (ER) stress, and steroidogenesis. The expression of differentially expressed genes (DEG) Hes1 was higher in PCOS and PCOS + CUMS groups, exhibiting enhanced expression by pseudotime and positively related to inflammation. Pseudotemporal analysis revealed that inflammation contributed to the different GCs distributions. Moreover, analysis of DEGs and gene ontology (GO) function enrichment revealed CUMS aggravated inflammation in PCOS GCs possibly via interferon signaling pathway. In theca cells (TCs), nine clusters were observed and some of them were relevant to inflammation, ER stress, and lipid metabolism. DEGs Ass1, Insl3, and Ifi27 were positively related to Cyp17a1, and Ces1d might contribute to the different trajectory of TCs. Subsequent scRNA-seq revealed a signature profile of endothelial cells (ECs) and Fibros, which suggest that inflammation-induced damage of ECs and Fibro, further exacerbated by CUMS. Finally, analysis of T cells and mononuclear phagocytes (MPs) revealed the existence of immune dysfunction, among which interferon signaling played a critical role. These findings provided more knowledge for a better understanding PCOS from the view of inflammation and identified new biomarkers and targets for the treatment of PCOS with psychological diseases.NEW & NOTEWORTHY In this study, we mapped the landscape of polycystic ovary syndrome (PCOS) ovary with rat model induced by letrozole and provided a novel insight into the molecular mechanism of PCOS accompanied by chronic unpredicted mild stress (CUMS) at single-cell transcriptomic level. These observations highlight the importance of inflammation in the pathogenesis of PCOS, which might also be the bridge between PCOS and psychological diseases.
Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/metabolismo , Letrozol/efeitos adversos , Letrozol/metabolismo , Células Endoteliais/metabolismo , Células da Granulosa/metabolismo , Inflamação/genética , Inflamação/metabolismo , Interferons/efeitos adversos , Interferons/metabolismoRESUMO
BACKGROUND: This study aimed to investigate the electrophysiological characteristics of idiopathic ventricular arrhythmias (VAs) originating from the left ventricular posterior papillary muscles (LPPM) and explore the efficiency of catheter ablation using three-dimensional intracardiac ultrasound technology. METHODS: Twenty-seven cases of premature ventricular contraction/ventricular tachycardia (PVC/VT) originating from the left ventricular posterior papillary muscles were recorded from July 2015 to June 2019 in the Central Hospital of Shengli Oil Field and the First Affiliated Hospital of Zhengzhou University. Electrophysiological mapping and radiofrequency catheter ablation (RFCA) were performed using three-dimensional intracardiac ultrasound technology. The characteristics of the body surface and intracavity electrocardiogram were analyzed. All cases were followed up for 24 months after the operation. RESULTS: The VAs of all 27 cases were successfully eliminated by catheter ablation. QRS complexes were observed with a right bundle branch block (RBBB) pattern and a steep slope in the initial segment. Lead I appeared with an Rs pattern, and inferior leads (lead II, III, and aVF) were usually with an S wave. The lead aVR appeared with a qR pattern, while the R wave was commonly found in aVL. The main wave in leads V1 -V3 was positive but negative in V5 and V6 . CONCLUSION: Ventricular arrhythmias originating from the left ventricular posterior papillary muscles have similar electrophysiological characteristics. The origin site was accurately located using three-dimensional intracardiac ultrasound technology. Catheter ablation effectively eliminated VAs.
Assuntos
Ablação por Cateter , Taquicardia Ventricular , Humanos , Ablação por Cateter/métodos , Eletrocardiografia , Músculos Papilares/diagnóstico por imagem , Músculos Papilares/cirurgia , Taquicardia Ventricular/diagnóstico por imagem , Taquicardia Ventricular/cirurgia , Resultado do TratamentoRESUMO
The study of genetic syndromes characterized by sensitivity to DNA damaging agents has provided important insights into the mechanisms that maintain genome stability and identified novel targets for cancer therapies. Here, we used exome sequencing to study 51 unrelated individuals with previously reported hypersensitivity to ionizing radiation as well as a range of neurologic, immunologic, and developmental features, but who did not clearly fit any previously defined genetic syndrome. Based on the combination of variant identification, computational evidence of deleteriousness, and functional screening, we identified three groups of subjects. Two subjects carried the bi-allelic loss of function variants in causative genes for known DNA damage response syndromes. Eight subjects carried the single loss of function variants in causative genes for DNA damage response syndromes, six of whom also carried predicted deleterious variants in other genes with DNA damage-related functions. Three subjects carried deleterious mutations in genes without obvious roles in DNA damage responses. However, treatment of U2OS cells with small interfering RNA targeting these genes resulted in significantly increased radiation sensitivity. Our results suggest that gene-gene interaction may contribute to ionizing radiation sensitivity as well as highlighting possible roles for several genes not obviously involved in the response to DNA damage.
Assuntos
Exoma , Radiação Ionizante , Exoma/genética , Predisposição Genética para Doença , Humanos , Mutação , Sequenciamento do Exoma/métodosRESUMO
INTRODUCTION: Linear ablation in addition to pulmonary vein antrum isolation (PVAI) has failed to improve the success rate for persistent atrial fibrillation (PeAF), due to incomplete block of ablation lines, especially in the mitral isthmus (MI). METHODS AND RESULTS: The study enrolled 191 patients (66 in group 1 and 125 in group 2). In group 1, ethanol infusion into the vein of Marshall was first performed, followed by radiofrequency (RF) applications targeting bilateral PVAI and bidirectional block in the roofline, cavotricuspid isthmus, and MI. In group 2, PVAI and the three linear ablations were completed using only RF energy. MI block was achieved in 63 (95.5%) and 101 (80.8%) patients in groups 1 and 2, respectively (p = .006). Patients in group 1 had shorter ablation time for left pulmonary vein antrum (8.15 vs. 12.59 min, p < .001) and MI (7.0 vs. 11.8 min, p < .001) and required less cardioversion (50 [78.5%] vs. 113 [90.4%], p = .007). During the 12-month follow-up, 58 (87.9%) patients were free from atrial fibrillation/atrial tachycardia in group 1 compared with 81 (64.8%) in group 2 (p < .001). In multivariate cox regression, the "upgraded 2C3L" procedure is associated with a lower recurrence rate (hazard ratio = 0.27, 95% confidence interval = 0.12-0.59). CONCLUSION: Compared with the conventional "2C3L" approach, the "upgraded 2C3L" approach has higher effectiveness for ablation of PeAF.
Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Etanol/efeitos adversos , Humanos , Veias Pulmonares/cirurgia , Recidiva , Taquicardia , Resultado do TratamentoRESUMO
Protein kinase R (PKR) is an interferon (IFN)-inducible, double-stranded RNA-activated kinase that initiates apoptosis in response to cellular stress. To determine the role of PKR in hematopoiesis, we developed transgenic mouse models that express either human PKR (TgPKR) or a dominant-negative PKR (TgDNPKR) mutant specifically in hematopoietic tissues. Significantly, peripheral blood counts from TgPKR mice decrease with age in association with dysplastic marrow changes. TgPKR mice have reduced colony-forming capacity and the colonies also are more sensitive to hematopoietic stresses. Furthermore, TgPKR mice have fewer hematopoietic stem/progenitor cells (HSPCs), and the percentage of quiescent (G0) HSPCs is increased. Importantly, treatment of TgPKR bone marrow (BM) with a PKR inhibitor specifically rescues sensitivity to growth factor deprivation. In contrast, marrow from PKR knockout (PKRKO) mice has increased potential for colony formation and HSPCs are more actively proliferating and resistant to stress. Significantly, TgPKR HSPCs have increased expression of p21 and IFN regulatory factor, whereas cells from PKRKO mice display mechanisms indicative of proliferation such as reduced eukaryotic initiation factor 2α phosphorylation, increased extracellular signal-regulated protein kinases 1 and 2 phosphorylation, and increased CDK2 expression. Collectively, data reveal that PKR is an unrecognized but important regulator of HSPC cell fate and may play a role in the pathogenesis of BM failure.
Assuntos
Apoptose , Doenças da Medula Óssea/patologia , Diferenciação Celular , Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Animais , Western Blotting , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/metabolismo , Ciclo Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Genes Dominantes , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , RNA Mensageiro/genética , Tolerância a Radiação , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , eIF-2 QuinaseRESUMO
Common digestive precancerous lesions, including oral potentially malignant disorders (OPMDs), gastric ulcers and colorectal adenoma, harbor high risk of cancerous transformation. Early intervention of these lesions is significant to prevent carcinogenesis and improve patients' prognosis. Lycopene, a carotenoid predominantly accumulated in tomatoes, is clinically recommended with its cis structure; as lycopene harbors the most potent antioxidative effects among carotenoids, its chemopreventive effects on the premalignant lesions is noted. Despite several reviews have assessed lycopene's efficacy for OPMDs, emerging studies have reported varying efficacy for digestive precancerous lesion with no comprehensive summary. Therefore, this review initially evaluates the efficacy and underlying mechanisms of lycopene for management of digestive precancerous lesions. According to the included studies, lycopene may show high promise in the management of digestive precancerous lesions, such as relieving mouth opening and burning sensation of oral submucous fibrosis (OSF), presenting potentially equivalent efficacy on managing oral lichen planus (OLP) as steroids and alleviating gastrointestinal precancers' symptoms, meanwhile lowering colon cancer risk. Moreover, its mechanisms for managing digestive precancerous lesions are concretely summarized, including anti-oxidative stress effects, anti-inflammatory response and regulation of cell proliferation and apoptosis, especially its modifications on TLR4/TRIF/NF-κB signaling pathway and p53-dependent cell cycle control and apoptosis. More studies are warranted to confirm its long-term efficacy and preventive role against malignant transformation of digestive precancerous lesions as evidence is insufficient.
RESUMO
Brevibacillus laterosporus S62-9 has been shown to improve broiler growth performance and immunity. In the present study, we aimed to evaluate the effects of B. laterosporus S62-9 on the immunity and lipid metabolism of broilers by means of transcriptomic analysis. A total of 160 1-day-old broilers were randomly allocated to a S62-9 group, the diet of which was supplemented with 106 CFU/g B. laterosporus S62-9 daily, and a control group, which was not. After 42 d of feeding, the broilers in the S62-9 group had higher body mass (7.2%) and feed conversion ratio (5.19%) than the control group. Supplementation with B. laterosporus S62-9 resulted in lower serum total cholesterol and low-density lipoprotein-cholesterol concentrations and higher high-density lipoprotein-cholesterol concentrations. An analysis of the fatty acid composition of the broiler's thigh muscles revealed that the proportions of the unsaturated fatty acids myristoleic acid (C14:1) and arachidonic acid (C20:1) were higher for birds in the S62-9 group. Transcriptomic analysis also showed an upregulation of immunity-related genes in the S62-9 group. Gene Ontology functional enrichment analysis showed that the mitogen-activated protein kinase pathway was enriched in the liver, the defense response was enriched in the duodenum, and immunoglobulin-related entries were enriched in the jejunum of the S62-9 group. Furthermore, the expression of key genes involved in unsaturated fatty acid synthesis (SCD, encoding stearoyl-CoA desaturase) and fatty acid metabolism (HACD2, encoding 3-hydroxyacyl-CoA dehydratase 2) was upregulated in the liver, and the expression of genes associated with fat biosynthesis and accumulation, such as PLIN1, encoding perilipin 1, and FABP4, encoding fatty acid binding protein 4, was upregulated in the ileum of the birds in the S62-9 group. In summary, supplementation with B. laterosporus S62-9 could improve immune defense and the fatty acid metabolism of broiler chickens, thereby enhancing their disease resistance and promoting growth and development.
Assuntos
Ração Animal , Brevibacillus , Galinhas , Dieta , Perfilação da Expressão Gênica , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/genética , Ração Animal/análise , Brevibacillus/genética , Dieta/veterinária , Perfilação da Expressão Gênica/veterinária , Probióticos/administração & dosagem , Probióticos/farmacologia , Transcriptoma , Metabolismo dos Lipídeos , Distribuição Aleatória , Suplementos Nutricionais/análiseRESUMO
Bone mesenchymal stem cells (BMSCs) are crucial for bone tissue regeneration, the mechanical microenvironment of hard tissues, including bone and teeth, significantly affects the osteogenic differentiation of BMSCs. Biomaterials may mimic the microenvironment of the extracellular matrix and provide mechanical signals to regulate BMSCs differentiation via inducing the secretion of various intracellular factors. Biomaterials direct the differentiation of BMSCs via mechanical signals, including tension, compression, shear, hydrostatic pressure, stiffness, elasticity, and viscoelasticity, which can be transmitted to cells through mechanical signalling pathways. Besides, biomaterials with piezoelectric effects regulate BMSCs differentiation via indirect mechanical signals, such as, electronic signals, which are transformed from mechanical stimuli by piezoelectric biomaterials. Mechanical stimulation facilitates achieving vectored stem cell fate regulation, while understanding the underlying mechanisms remains challenging. Herein, this review summarizes the intracellular factors, including translation factors, epigenetic modifications, and miRNA level, as well as the extracellular factor, including direct and indirect mechanical signals, which regulate the osteogenic differentiation of BMSCs. Besides, this review will also give a comprehensive summary about how mechanical stimuli regulate cellular behaviours, as well as how biomaterials promote the osteogenic differentiation of BMSCs via mechanical microenvironments. The cellular behaviours and activated signal pathways will give more implications for the design of biomaterials with superior properties for bone tissue engineering. Moreover, it will also provide inspiration for the construction of bone organoids which is a useful tool for mimicking in vivo bone tissue microenvironments.
Assuntos
Materiais Biocompatíveis , Osteogênese , Osteogênese/genética , Osso e Ossos , Diferenciação Celular/genética , Regeneração ÓsseaRESUMO
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Assuntos
Aterosclerose , Nanoestruturas , Humanos , Aterosclerose/diagnóstico , Aterosclerose/tratamento farmacológico , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Animais , Placa Aterosclerótica/diagnóstico , Placa Aterosclerótica/tratamento farmacológico , Sistemas de Liberação de MedicamentosRESUMO
Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, destruction of bone microstructure, raised bone fragility, and enhanced risk of fractures. The correlation between gut microbiota and bone metabolism has gradually become a widespread research hotspot in recent years, and successive studies have revealed that the alterations of gut microbiota and its-related metabolites are related to the occurrence and progression of osteoporosis. Moreover, several emerging studies on the relationship between gut microbiota-related metabolites and bone metabolism are also underway, and extensive research evidence has indicated an inseparable connection between them. Combined with latest literatures and based on inextricable connection of gut-bone axis, this review is aimed to summarize the relation, potential mechanisms, application strategies, clinical application prospects, and existing challenges of gut microbiota and its-related metabolites on osteoporosis, thus updating the knowledge in this research field and providing certain reference for future researches.
Assuntos
Microbioma Gastrointestinal , Doenças Musculoesqueléticas , Osteoporose , HumanosRESUMO
BACKGROUND: Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE: MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN: Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS: Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION: Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.
Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Estresse Psicológico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Estresse Psicológico/tratamento farmacológico , Masculino , Ratos , Antidepressivos/farmacologia , Modelos Animais de Doenças , Gastroenteropatias/tratamento farmacológico , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Motilidade Gastrointestinal/efeitos dos fármacos , Sistemas Neurossecretores/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Citrus/química , Fator Neurotrófico Derivado do Encéfalo/metabolismoRESUMO
Brevibacillus laterosporus has been added as a direct-fed microbiota to chicken. Yet, few studies have reported the effects of B. laterosporus on broiler growth and gut microbiota. The aim of this study was to evaluate the effects of B. laterosporus S62-9 on growth performance, immunity, cecal microbiota, and metabolites in broilers. A total of 160 1-day-old broilers were randomly divided into S62-9 and control groups, with or without 106 CFU/g B. laterosporus S62-9 supplementation, respectively. During the 42 days feeding, body weight and feed intake were recorded weekly. Serum was collected for immunoglobulin determination, and cecal contents were taken for 16S rDNA analysis and metabolome at Day 42. Results indicated that the broilers in S62-9 group showed an increase in body weight of 7.2% and 5.19% improvement in feed conversion ratio compared to the control group. The B. laterosporus S62-9 supplementation promoted the maturation of immune organs and increased the concentration of serum immunoglobulins. Furthermore, the α-diversity of cecal microbiota was improved in the S62-9 group. B. laterosporus S62-9 supplementation increased the relative abundance of beneficial bacteria including Akkermansia, Bifidobacterium, and Lactobacillus, while decreased the relative abundance of pathogens including Klebsiella and Pseudomonas. Untargeted metabolomics revealed that 53 differential metabolites between the two groups. The differential metabolites were enriched in 4 amino acid metabolic pathways, including arginine biosynthesis and glutathione metabolism. In summary, B. laterosporus S62-9 supplementation could improve the growth performance and immunity through the regulation of gut microbiota and metabolome in broilers.
RESUMO
Probiotics are being used in diets to improve the quality of chicken meat. The aim of the study was to investigate the effects of dietary supplementation with Brevibacillus laterosporus S62-9 microbial agent on the meat quality, amino acids, and volatile compounds of chicken. The experiment was carried out with 160 1-day-old Arbor Acres male broiler chickens, rearing for 42 d. The chickens were randomly divided into two groups of 8 replicates each, with 10 chickens in each group. No supplement was added to the basal diet in the control group and Brevibacillus laterosporus S62-9 microbial agent was added to the diet of the experimental group. At the end of the experiment, the meat quality, meat chemical composition, amino acid composition, and volatile compounds of chicken were determined. The results showed that pH (p < 0.05), pressing loss (p < 0.05), cooking loss (p < 0.05), and shear force (p < 0.01) were notably decreased, the percentage of breast meat (p < 0.01), protein content (p < 0.05) were visibly increased, and remarkable changes were observed in the amino acid composition (change in seven amino acids) and volatile compounds profile (an increase of about 20-fold in the contents of 1-octen-3-ol and hexanal). In summary, it was found that Brevibacillus laterosporus S62-9 microbial agent can be used as a novel and effective feed supplement to improve the nutritional quality and flavor characteristics of broilers.
RESUMO
Introduction: The role of vitamin C in pediatric fractures has not received much attention, although it is known to be a factor in osteoporotic fractures in the elderly. This case-control study aimed to investigate the changes in serum vitamin C levels among children with limb fractures. Methods: We recruited 325 children with and 316 children without limb fractures hospitalized between January 2021 and December 2021. Following admission, basic demographic data of all participants were collected, and fasting serum vitamin C levels were determined using ultra-high-performance liquid chromatography-tandem mass spectrometry. Results: The mean age of the fracture group was 5.1 years (95% CI, 4.83-5.33). The serum vitamin C levels in the fracture group (4.48â µg/ml) were significantly lower than those in the control group (8.38â µg/ml) (p < 0.0001). Further subgroup analysis of the fracture group revealed that serum vitamin C levels decreased significantly after 4 years of age and there was a significant difference in the duration after injury between <6 and >6â h (p = 0.0224). Spearman's rank correlation coefficient suggested that age and vitamin C levels were negatively correlated in the fracture group. Conclusion: In general, children with limb fractures had lower serum vitamin C levels, especially those aged 4 years and over.
RESUMO
OBJECTIVE: The suitability of in situ cast fixation for treating Gartland IIA humeral supracondylar fractures has remained controversial due to concerns regarding loss of elbow flexion. This study aimed to assess the instant loss of elbow flexion after Gartland IIA humeral supracondylar fractures based on the relationship between the anterior marginal line of the humerus and capitellum in the lateral view. METHODS: This simulation study was conducted with normal radiographs using Adobe Photoshop 14.0, followed by verification using clinical cases. Standard lateral views of normal elbows of children were collected from January 2008 to February 2020. Adobe Photoshop was used to simulate Gartland IIA supracondylar fractures with different degrees of angulation in the sagittal plane. A formula was deduced to assess flexion loss, and this method was verified in three cases. The data were grouped by age, and the relationship between elbow flexion loss and age, as well as the angulation of the fracture, was analyzed using a one-way or multivariate ANOVA. RESULTS: There was a flexion loss of 19° (11-30°) when the anterior margin line of the humerus was tangential to the capitellum. This loss increased with age at injury (r = 0.731, P = 0.000). Moreover, the difference in angulation in the sagittal plane also influenced the extent of elbow flexion loss (r = -0.739, P = 0.000). The more horizontal the fracture line in the lateral view, the greater the loss of elbow flexion. CONCLUSION: Instant elbow flexion loss after Gartland IIA humeral supracondylar fractures increases with age at the time of injury and decreases with angulation in the sagittal plane. When the anterior margin of the humerus is tangential to the capitellum, there will be an average loss of 19° in elbow flexion. These findings provide a quantitative reference for clinical decision-making in the treatment of Gartland IIA supracondylar fractures.
Assuntos
Articulação do Cotovelo , Fraturas do Úmero , Humanos , Criança , Cotovelo/cirurgia , Resultado do Tratamento , Estudos Retrospectivos , Articulação do Cotovelo/diagnóstico por imagem , Articulação do Cotovelo/cirurgia , Fraturas do Úmero/diagnóstico por imagem , Fraturas do Úmero/cirurgia , Úmero , Fixação Interna de FraturasRESUMO
OBJECTIVE: To investigate whether meranzin hydrate (MH) can alleviate depression-like behavior and hypomotility similar to Chaihu Shugan Powder (CSP), and further explore the potential common mechanisms. METHODS: Totally 120 Spraque-Dawley rats were randomly divided into 5-8 groups including sham, vehicle, fluoxetine (20 mg/kg), mosapride (10 mg/kg), CSP (30 g/kg), MH (9.18 mg/kg), [D-Lys3]-GHRP-6 (Dlys, 0.5 mg/kg), and MH+Dlys groups by a random number table, 8 rats in each group. And 32 mice were randomly divided into wild-type, MH (18 mg/kg), growth hormone secretagogue receptor-knockout (GHSR-KO), and GHSR+MH groups, 8 mice in each group. The forced swimming test (FST), open field test (OFT), tail suspension test (TST), gastric emptying (GE) test, and intestinal transit (IT) test were used to assess antidepressant and prokinetic (AP) effects after drug single administration for 30 min with absorbable identification in rats and mice, respectively. The protein expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated mammalian target of rapamycin (p-mTOR) in the hippocampus of rats were evaluated by Western blot. The differences in functional brain changes were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD). RESULTS: MH treatment improved depression-like behavior (FST, OFT) and hypomotility (GE, IT) in the acute forced swimming (FS) rats (all P<0.05), and the effects are similar to the parent formula CSP. The ghrelin antagonist [D-Lys3]-GHRP-6 inhibited the effect of MH on FST and GE (P<0.05). Similarly, MH treatment also alleviated depression-like behavior (FST, TST) in the wild-type mice, however, no effects were found in the GHSR KO mice. Additionally, administration of MH significantly stimulated BDNF and p-mTOR protein expressions in the hippocampus (both P<0.01), which were also prevented by [D-Lys3]-GHRP-6 (P<0.01). Besides, 3 main BOLD foci following acute FS rats implicated activity in hippocampus-thalamus-basal ganglia (HTB) circuits. The [D-Lys3]-GHRP-6 synchronously inhibited BOLD HTB foci. As expected, prokinetic mosapride only had effects on the thalamus and basal ganglia, but not on the hippocampus. Within the HTB, the hippocampus is implicated in depression and FD. CONCLUSIONS: MH accounts for part of AP effects of parent formula CSP in acute FS rats, mainly via ghrelin-related shared regulation coupled to BOLD signals in brain areas. This novel functionally connection of HTB following acute stress, treatment, and regulation highlights anti-depression unified theory.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Grelina , Ratos , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Grelina/farmacologia , Grelina/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Hipocampo , Estresse Psicológico , Mamíferos/metabolismoRESUMO
To investigate the effects of ginsenosides on the memory impairment in Sprague-Dawley rats (SD rats) after anesthesia through the administration of propofol SPF, SD rats were randomly divided into four groups: control group (Group I), propofol-treated group (Group II), low dose of ginsenosides-treated group (Group III) and high dose of ginsenosides-treated group (Group IV). These rats were subjected to fear memory test in shuttle box, Y-maze test and Morris water maze test. Immediately after the test, the expression levels of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) were further detected by ELISA method. Ginsenosides could ameliorate the impairment on the functions of fear memory, working memory and spatial memory in rats caused by anesthesia via the injection of Propofol. Furthermore, the expression levels of NGF and BDNF on rat hippocampus were significant increased by the treatment of ginsenosides at both two doses compared with the control group (both P < 0.05). Ginsenosides hold potential to be developed as a novel therapeutic agent for those patients suffering from postoperative cognitive dysfunction caused by anesthesia via the treatment of propofol.
Assuntos
Anestesia/efeitos adversos , Ginsenosídeos/farmacologia , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Propofol/efeitos adversos , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Fator de Crescimento Neural/biossíntese , Ratos , Ratos Sprague-DawleyRESUMO
OBJECTIVE: This study aimed to investigate the biological factors associated with baseline peritoneal transport in uremic patients before dialysis. METHODS: Thirty patients with uremia were grouped according to their peritoneal dialysate creatinine/serum creatinine ratio (D/P) as high-transport (H, 16 cases) with D/P>0.65 and low-transport (L, 14 cases) with D/P≤0.65 one month after continuous ambulatory peritoneal dialysis treatment. Multi-inflammatory levels such as serum IL-6 and albumin, peritoneal IL-6 level, and microvessel density (MVD) of visceral peritoneal were compared and correlated between the two groups to determine the associated factors. RESULTS: There were no significant differences in clinical parameters between the two groups (p < 0.05). There were no significant differences in serum IL-6 and albumin between the two groups. However, peritoneal IL-6 and MVD in group H were significantly higher than group L (p=0.012, p=0.044), and they were positively correlated (r=0.368, p=0.045). Furthermore, baseline D/P was positively correlated with IL-6 expressions (r=0.640, p=0.000) and peritoneal MVD (r=0.476, p=0.008), and independently associated with peritoneal IL-6 expression (p=0.004). CONCLUSIONS: The baseline peritoneal transport performance is associated with peritoneal IL-6 expression and MVD but not circulatory IL-6.
Assuntos
Interleucina-6 , Falência Renal Crônica , Peritônio , Humanos , Albuminas , Transporte Biológico , Falência Renal Crônica/complicações , Falência Renal Crônica/metabolismo , Falência Renal Crônica/terapia , Peritônio/metabolismo , Diálise RenalRESUMO
During times of war or natural disasters, rhabdomyolysis leading to acute kidney injury (AKI) can assume epidemic proportions. Fasudil attenuates ischemia/reperfusion-induced AKI. We investigated the therapeutic effect of an early application of fasudil on AKI induced by rhabdomyolysis and explored the potential mechanisms. Male Wistar rats were randomly divided into a control group (saline, 7 mL/kg, i.m.), a Gly group (50% glycerol, 7 mL/kg, i.m.), and a fasudil group (50% glycerol, 7 mL/kg, i.m.; fasudil, 20 mg/kg bodyweight, i.p., three times every 24 h beginning 72 h before glycerol administration). Serum creatinine, blood urea nitrogen (BUN), and histopathological changes were used to demonstrate kidney function 24 h after the glycerol injection. Cell apoptosis and the expression of rho-associated protein kinase member (ROCK1), phosphatase and tensin homolog (PTEN), P-Akt, and caspase-8, -9, and -3 were measured. Serum creatinine and BUN levels increased significantly in Gly group compared with control group. Both levels decreased after fasudil treatment. The renal tubular damage score was significantly lower and cell apoptosis was significantly less in fasudil group compared with Gly group. The expression levels of ROCK1, PTEN, and caspase-8, -9, and -3 were upregulated significantly in Gly group, and their expression was reduced in the fasudil group. The P-Akt level was decreased in Gly group and upregulated significantly in fasudil group. Early application of fasudil reduced rhabdomyolysis-associated renal injury by inhibiting Rho kinase and thereby activating the PI-3K/Akt pathway, which decreased cell apoptosis via both the intrinsic and extrinsic apoptotic pathways.
Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Injúria Renal Aguda/tratamento farmacológico , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Injúria Renal Aguda/etiologia , Animais , Masculino , Ratos , Ratos Wistar , Rabdomiólise/complicaçõesRESUMO
Major depressive disorder has become an increasingly serious disease in the world. However, convenient antidepressants have low efficacy and slow onset defects, which is dangerous for suicidal tendency patients. Nowadays, rapid antidepressant research has become the focus. Merazin hydrate (MH), a component of the natural herb Fructus Aurantii, has been shown to produce rapid antidepressant-like effects in animal models. However, the mechanism of its rapid antidepressant-like effects was still elusive like that of ketamine. The study aimed to reveal the relationship between the rapid antidepressant-like effects of MH and mTOR signaling, which is closely related to rapid antidepressants. The results showed that a single administration of MH was capable of reversing the behavioral defects at 2 h in two classic depressive models including learned helplessness (LH) and chronic mild stress (CMS). Moreover, the phosphorylated expression of mTOR, reduced by LH or CMS, was upregulated after a single administration of MH, and the expressions of BDNF and synaptic proteins in the hippocampus were also reversed 2 h later, similar to ketamine. Moreover, LH increased the expressions of eNOS, IL-10, and TNF-α in serum, which were all reversed by a single dose of MH at 2 h, similar to ketamine. Furthermore, we used rapamycin, an antagonist of mTOR, to confirm whether the rapid antidepressant-like effects of MH depend on mTOR or not. We found that inhibiting the activation of mTOR blocked the rapid antidepressant-like effects of MH, which also inhibited the upregulation of expressions of BDNF and PSD95. To sum up, the rapid antidepressant effect of MH depended on the activation of mTOR to regulate downstream BNDF and synaptic protein expressions.