Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402823, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712472

RESUMO

Perovskite oxides are proven as a striking platform for developing high-performance electrocatalysts. Nonetheless, a significant portion of them show CO2 electroreduction (CO2RR) inertness. Here a simple but effective strategy is reported to activate inert perovskite oxides (e.g., SrTiO3) for CO2RR through slight Cu2+ doping in B-sites. For the proof-of-concept catalysts of SrTi1-xCuxO3 (x = 0.025, 0.05, and 0.1), Cu2+ doping (even in trace amount, e.g., x = 0.025) can not only create active, stable CuO6 octahedra, increase electrochemical active surface area, and accelerate charge transfer, but also significantly regulate the electronic structure (e.g., up-shifted band center) to promote activation/adsorption of reaction intermediates. Benefiting from these merits, the stable SrTi1-xCuxO3 catalysts feature great improvements (at least an order of magnitude) in CO2RR activity and selectivity for high-order products (i.e., CH4 and C2+), compared to the SrTiO3 parent. This work provides a new avenue for the conversion of inert perovskite oxides into high-performance electrocatalysts toward CO2RR.

2.
Appl Microbiol Biotechnol ; 108(1): 270, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512481

RESUMO

Thermophilic cyanobacteria are prokaryotic photoautotrophic microorganisms capable of growth between 45 and 73 °C. They are typically found in hot springs where they serve as essential primary producers. Several key features make these robust photosynthetic microbes biotechnologically relevant. These are highly stable proteins and their complexes, the ability to actively transport and concentrate inorganic carbon and other nutrients, to serve as gene donors, microbial cell factories, and sources of bioactive metabolites. A thorough investigation of the recent progress in thermophilic cyanobacteria reveals a significant increase in the number of newly isolated and delineated organisms and wide application of thermophilic light-harvesting components in biohybrid devices. Yet despite these achievements, there are still deficiencies at the high-end of the biotechnological learning curve, notably in genetic engineering and gene editing. Thermostable proteins could be more widely employed, and an extensive pool of newly available genetic data could be better utilised. In this manuscript, we attempt to showcase the most important recent advances in thermophilic cyanobacterial biotechnology and provide an overview of the future direction of the field and challenges that need to be overcome before thermophilic cyanobacterial biotechnology can bridge the gap with highly advanced biotechnology of their mesophilic counterparts. KEY POINTS: • Increased interest in all aspects of thermophilic cyanobacteria in recent years • Light harvesting components remain the most biotechnologically relevant • Lack of reliable molecular biology tools hinders further development of the chassis.


Assuntos
Biotecnologia , Cianobactérias , Cianobactérias/genética , Cianobactérias/metabolismo , Engenharia Genética , Edição de Genes , Fotossíntese
3.
Angew Chem Int Ed Engl ; 63(22): e202404015, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38530039

RESUMO

Single atomic catalysts (SACs) offer a superior platform for studying the structure-activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well-defined and novel site configuration owing to the uncertainty of functional framework-derived SACs through calcination. Herein, a novel Bi-N2O2 site supported on the (1 1 0) plane of hydrogen-bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1-HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm-2. And, Bi1-HOF exhibits a long-term stability of over 30 h under a successive potential-step test with a current density of 100-400 mA cm-2. Density function theory (DFT) calculations illustrate that the novel Bi-N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M-N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure-activity relationships during CO2RR.

4.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047668

RESUMO

The cryopreservation of red blood cells (RBCs) holds great potential for ensuring timely blood transfusions and maintaining an adequate RBC inventory. The conventional cryoprotectants (CPAs) have a lot of limitations, and there is an obvious need for novel, efficient, and biocompatible CPAs. Here, it is shown for the first time that the addition of dimethylglycine (DMG) improved the thawed RBC recovery from 11.55 ± 1.40% to 72.15 ± 1.22%. We found that DMG could reduce the mechanical damage by inhibiting ice formation and recrystallization during cryopreservation. DMG can also scavenge reactive oxygen species (ROS) and maintain endogenous antioxidant enzyme activities to decrease oxidative damage during cryopreservation. Furthermore, the properties of thawed RBCs were found to be similar to the fresh RBCs in the control. Finally, the technique for order performance by similarity to ideal solution (TOPSIS) was used to compare the performance of glycerol (Gly), hydroxyethyl starch (HES), and DMG in cryopreservation, and DMG exhibited the best efficiency. This work confirms the use of DMG as a novel CPA for cryopreservation of RBCs and may promote clinical transfusion therapy.


Assuntos
Criopreservação , Gelo , Criopreservação/métodos , Crioprotetores/farmacologia , Crioprotetores/química , Eritrócitos , Estresse Oxidativo
5.
Angew Chem Int Ed Engl ; 62(46): e202312644, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37699862

RESUMO

Developing highly efficient and stable hydrogen production catalysts for electrochemical water splitting (EWS) at industrial current densities remains a great challenge. Herein, we proposed a heterostructure-induced-strategy to optimize the metal-support interaction (MSI) and the EWS activity of Ru-Ni3 N/NiO. Density functional theory (DFT) calculations firstly predicted that the Ni3 N/NiO-heterostructures can improve the structural stability, electronic distributions, and orbital coupling of Ru-Ni3 N/NiO compared to Ru-Ni3 N and Ru-NiO, which accordingly decreases energy barriers and increases the electroactivity for EWS. As a proof-of-concept, the Ru-Ni3 N/NiO catalyst with a 2D Ni3 N/NiO-heterostructures nanosheet array, uniformly dispersed Ru nanoparticles, and strong MSI, was successfully constructed in the experiment, which exhibited excellent HER and OER activity with overpotentials of 190 mV and 385 mV at 1000 mA cm-2 , respectively. Furthermore, the Ru-Ni3 N/NiO-based EWS device can realize an industrial current density (1000 mA cm-2 ) at 1.74 V and 1.80 V under alkaline pure water and seawater conditions, respectively. Additionally, it also achieves a high durability of 1000 h (@ 500 mA cm-2 ) in alkaline pure water.

6.
Chemistry ; 28(59): e202201471, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35707987

RESUMO

Single-atom catalysts (SACs) have emerged as a new frontier in areas such as electrocatalysis, photocatalysis, and enzymatic catalysis. Aided by recent advances in the synthetic methodologies of nanomaterials, atomic characterization technologies, and theoretical calculation modeling, various SACs have been prepared for a variety of catalytic reactions. To meet the requirements of SACs with distinctive performance and appreciable selectivity, much research has been carried out to adjust the coordination configuration and electronic properties of SACs. This concept summarizes the latest advances in the experimental and computational efforts aimed at tuning the axial coordination of SACs. Series of atoms, functional groups or even macrocycles are oriented into the atomic metal center, and how this affects the electrocatalytic performance is also reviewed. Finally, this concept presents perspectives for the further precise design, preparation and in-situ detection of axially coordinated SACs.


Assuntos
Nanoestruturas , Elementos de Transição , Catálise , Metais
7.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269780

RESUMO

Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future.


Assuntos
Proteínas Anticongelantes , Gelo , Animais , Proteínas Anticongelantes/química , Criopreservação , Crioprotetores/metabolismo , Crioprotetores/farmacologia , Cristalização , Congelamento
8.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955596

RESUMO

The cryopreservation of red blood cells (RBCs) plays a key role in blood transfusion therapy. Traditional cryoprotectants (CPAs) are mostly organic solvents and may cause side effects to RBCs, such as hemolysis and membrane damage. Therefore, it is necessary to find CPAs with a better performance and lower toxicity. Herein, we report for the first time that N-[Tri(hydroxymethyl)methyl]glycine (tricine) showed a great potential in the cryopreservation of sheep RBCs. The addition of tricine significantly increased the thawed RBCs' recovery from 19.5 ± 1.8% to 81.2 ± 8.5%. The properties of thawed RBCs were also maintained normally. Through mathematical modeling analysis, tricine showed a great efficiency in cryopreservation. We found that tricine had a good osmotic regulation capacity, which could mitigate the dehydration of RBCs during cryopreservation. In addition, tricine inhibited ice recrystallization, thereby decreasing the mechanical damage from ice. Tricine could also reduce oxidative damage during freezing and thawing by scavenging reactive oxygen species (ROS) and maintaining the activities of endogenous antioxidant enzymes. This work is expected to open up a new path for the study of novel CPAs and promote the development of cryopreservation of RBCs.


Assuntos
Antioxidantes , Gelo , Animais , Antioxidantes/farmacologia , Criopreservação , Crioprotetores/química , Crioprotetores/farmacologia , Eritrócitos , Glicina/análogos & derivados , Glicina/farmacologia , Ovinos
9.
Angew Chem Int Ed Engl ; 61(21): e202117617, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35247217

RESUMO

Exploring functional substrates and precisely regulating the electronic structures of atomic metal active species with moderate spin state are of great importance yet remain challenging. Hereon, we provide an axial Fe-O-Ti ligand regulated spin-state transition strategy to improve the oxygen reduction reaction (ORR) activity of Fe centers. Theoretical calculations indicate that Fe-O-Ti ligands in FeN3 O-O-Ti can induce a low-to-medium spin-state transition and optimize O2 adsorption by FeN3 O. As a proof-of-concept, the oriented catalyst was prepared from atomic-Fe-doped polymer-like quantum dots and ultrathin o-terminated MXene. The optimal catalyst exhibits an intrinsic activity that is almost 5 times higher than the control sample (without axial Fe-O-Ti ligands). It also delivers a superior performance in Zn-air batteries and H2 /O2 anion exchange membrane fuel cells in a wide-temperature range.

10.
Nanotechnology ; 31(12): 125404, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31766041

RESUMO

Herein, we design a dual-template-assisted pyrolysis method to prepare ultra-small Fe3O4 nanoparticles anchored on Fe/N-doped hollow porous carbon spheres (0.010-Fe/NHPCS-800) for oxygen reduction reaction (ORR). The synthesized SiO2 nanospheres, which are selected as the hard template, contribute to forming macroporous structure. Pluronic ® F127 is employed to fabricate mesopores through high-temperature pyrolysis as a soft template. In this way, the 0.010-Fe/NHPCS-800 architecture represents an ordered hierarchically porous property with a large BET surface area (1812 m2 g-1), which can facilitate the mass transport of reactants and increase the electrochemically active area. The Fe3O4 nanoparticles wrapped by graphitic carbon layers provide more active sites, and the synergistic interaction between Fe3O4 nanoparticles and doping N has a positive effect on ORR performance. The 0.010-Fe/NHPCS-800 catalyst outperforms the most effective ORR activities among a series of Fe/NHPCS samples with onset potential of 0.95 V (versus reversible hydrogen potential) and half-wave potential of 0.81 V, which is almost the same as the commercial Pt/C (0.96 and 0.81 V, correspondingly) in 0.10 M KOH. However, both the stability and durability of 0.010-Fe/NHPCS-800 surpass those of commercial Pt/C. Given all these advantages, 0.010-Fe/NHPCS-800 is a promising candidate to take the place of Pt-based electrocatalysts for ORR in the future.

11.
FEMS Yeast Res ; 19(3)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30985887

RESUMO

The red yeast Rhodosporidium toruloides is an excellent microbial host for production of carotenoids, neutral lipids and valuable enzymes. In recent years, genetic tools for gene expression and gene disruption have been developed for this red yeast. However, methods remain limited in terms of fine-tuning gene expression. In this study, we first demonstrated successful implementation of RNA interference (RNAi) in R. toruloides NP11, which was applied to down-regulate the expression of autophagy related gene 8 (ATG8), and fatty acid synthase genes (FAS1 and FAS2), respectively. Compared with the control strain, RNAi-engineered strains showed a silencing efficiency ranging from 11% to 92%. The RNAi approach described here ensures selective inhibition of the target gene expression, and should expand our capacity in the genetic manipulation of R. toruloides for both fundamental research and advanced cell factory development.


Assuntos
Basidiomycota/genética , Interferência de RNA , Família da Proteína 8 Relacionada à Autofagia/genética , Ácido Graxo Sintases/genética , Engenharia Genética/métodos , Transformação Genética
12.
Nanotechnology ; 30(7): 075402, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523950

RESUMO

The design of high-efficient and durable bi-functional oxygen electrocatalysts is still a great challenge. In this work, novel Co9S8 nanoparticles/N,S-codoped defect-rich carbon nanotubes (Co9S8/N,S-CNTs) were fabricated by an ingenious template method. CdS nanowires, as a sacrificial template, can be removed simultaneously during the carbonization process without additional post-treatments. The large BET surface area (661.2 m2 g-1) and pore volume (1.49 cm3 g-1) of Co9S8/N,S-CNTs could largely enhance the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities by facilitating the mass transportation and exposing more active sites. The abundant defects produced by the evaporation of Cd and S doping could provide more active sites for ORR and OER. Coupling with Co9S8, Co9S8/N,S-CNTs possesses more defects in the carbon skeleton, better electron conductivity, and larger effective electrochemical area. Co9S8/N,S-CNTs not only performs excellent ORR activity with a half-wave potential of 0.821 V but also owns RuO2-like OER activity in alkaline solution. The potential difference (ΔE) between ORR and OER is as low as 0.78 V in 0.10 M KOH. The excellent bi-functional performance enables the potential to be utilized in fuel cells and metal-air batteries.

13.
Mikrochim Acta ; 186(2): 74, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30627840

RESUMO

The authors report that CuOx/NiOy hollow nanocomposites are an effective bifunctional catalyst capable of oxidizing glucose and reducing hydrogen peroxide. Synthesis is based on a solvothermal process and subsequent thermal treatment. The structure can be controlled by adjusting the amounts of added NiCl2 during the solvothermal etching process, and core-shell, yolk-shell or hollow structures can be obtained. The porous hollow structure composite of type CuO30/NiO90 was used to modify a glassy carbon electrode. It exhibits excellent electrocatalytic activity towards glucose oxidation in solution of pH 13, typically at a working potential of +0.60 V (vs. Ag/AgCl). This enables voltammetric sensing of glucose with (a) a low limit of detection (0.08 µM, at S/N = 3), (b) over a wide linear range (0.20 µM - 2.5 mM), and (c) high sensitivity (2043 µA·mM-1·cm-2). The sensor is reproducible, selective and stable. It can be used to detect glucose in spiked human serum. The CuO30/NiO90 composite also displays good electrocatalytic activity towards reduction of H2O2 in neutral aqueous medium, typically at an applied potential of -0.35 V. It has a detection limit of 90 nM, a sensitivity of 271.1 µA·mM-1·cm-2, and a linear detection range that extends from 0.30 µM to 9.0 mM. Graphical abstract CuOx/NiOy nanocomposites with three different structures were synthesized by coordinated etching precipitation method. The hollow structure CuO30/NiO90 was coated on the surface of glassy carbon electrode for the amperometric determination of glucose and hydrogen peroxide.

14.
J Am Chem Soc ; 137(4): 1436-9, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25607754

RESUMO

The design of a new class of non-noble-metal catalysts with oxygen reduction reaction (ORR) activity superior to that of Pt is extremely important for future fuel cell devices. Here we demonstrate a one-pot, large-scale protocol for the controlled synthesis of new one-dimensional bamboo-like carbon nanotube/Fe(3)C nanoparticle hybrid nanoelectrocatalysts, which are directly prepared by annealing a mixture of PEG-PPG-PEG Pluronic P123, melamine, and Fe(NO(3))(3) at 800 °C in N(2). The resulting hybrid electrocatalysts show very high ORR activity with a half-wave potential of 0.861 V (vs reversible hydrogen electrode) in 0.10 M KOH solution, 49 mV more positive than that of 20 wt% Pt/C catalyst. Furthermore, they exhibit good ORR activity in acidic media, with an onset potential comparable to that of the Pt/C catalyst. Most importantly, they show much higher stability and better methanol tolerance, with almost no ORR polarization curve shift and no change of the oxygen reduction peak in the cyclic voltammogram in the presence of 1.0 M methanol, than those of the commercial Pt/C catalyst in both alkaline and acidic solutions. This makes them one of the best non-noble-metal catalysts ever reported for ORR in both alkaline and acidic solutions.

15.
ACS Biomater Sci Eng ; 10(7): 4259-4268, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38832439

RESUMO

Cryopreservation of red blood cells (RBCs) plays an indispensable role in modern clinical transfusion therapy. Researchers are dedicated to finding cryoprotectants (CPAs) with high efficiency and low toxicity to prevent RBCs from cryopreservation injury. This study presents, for the first time, the feasibility and underlying mechanisms of a novel CPA called tris(hydroxymethyl)aminomethane-3-propanesulfonic acid (TAPS) in RBCs cryopreservation. The results demonstrated that the addition of TAPS achieved a post-thaw recovery of RBCs at 79.12 ± 0.67%, accompanied by excellent biocompatibility (above 97%). Subsequently, the mechanism for preventing RBCs from cryopreservation injury was elucidated. On one hand, TAPS exhibits a significant amount of bound water and effectively inhibits ice recrystallization, thereby reducing mechanical damage. On the other hand, TAPS demonstrates high capacity to scavenge reactive oxygen species and strong endogenous antioxidant enzyme activity, providing effective protection against oxidative damage. Above all, TAPS can be readily removed through direct washing, and the RBCs after washing showed no significant differences in various physiological parameters (SEM, RBC hemolysis, ESR, ATPase activity, and Hb content) compared to fresh RBCs. Finally, the presented mathematical modeling analysis indicates the good benefits of TAPS. In summary, TAPS holds potential for both research and practical in the field of cryobiology, offering innovative insights for the improvement of RBCs cryopreservation in transfusion medicine.


Assuntos
Criopreservação , Crioprotetores , Eritrócitos , Eritrócitos/fisiologia , Criopreservação/métodos , Humanos , Crioprotetores/farmacologia , Crioprotetores/química , Preservação de Sangue/métodos , Hemólise , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular
16.
ACS Biomater Sci Eng ; 10(2): 851-862, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38176101

RESUMO

In transfusion medicine, the cryopreservation of red blood cells (RBCs) is of major importance. The organic solvent glycerol (Gly) is considered the current gold-standard cryoprotectant (CPA) for RBC cryopreservation, but the deglycerolization procedure is complex and time-consuming, resulting in severe hemolysis. Therefore, it remains a research hotspot to find biocompatible and effective novel CPAs. Herein, the natural and biocompatible inulin, a polysaccharide, was first employed as a CPA for RBC cryopreservation. The presence of inulin could improve the thawed RBC recovery from 11.83 ± 1.40 to 81.86 ± 0.37%. It was found that inulin could promote vitrification because of its relatively high viscosity and glass transition temperature (Tg'), thus reducing the damage during cryopreservation. Inulin possessed membrane stability, which also had beneficial effects on RBC recovery. Moreover, inulin could inhibit the mechanical damage induced by ice recrystallization during thawing. After cryopreservation, the RBC properties were maintained normally. Mathematical modeling analysis was adopted to compare the performance of inulin, Gly, and hydroxyethyl starch (HES) in cryopreservation, and inulin presented the best efficiency. This work provides a promising CPA for RBC cryopreservation and may be beneficial for transfusion therapy in the clinic.


Assuntos
Gelo , Vitrificação , Inulina/farmacologia , Inulina/metabolismo , Criopreservação/métodos , Eritrócitos/metabolismo , Crioprotetores/farmacologia , Crioprotetores/metabolismo , Glicerol/farmacologia , Glicerol/metabolismo , Membrana Celular
17.
Adv Mater ; : e2405109, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845131

RESUMO

Physically crosslinked microgels (PCMs) offer a biocompatible platform for various biomedical applications. However, current PCM fabrication methods suffer from their complexity and poor controllability, due to their reliance on altering physical conditions to initiate gelation and their dependence on specific materials. To address this issue, a novel PCM fabrication method is devised, which employs water transport-induced liquid-liquid phase separation (LLPS) to trigger the intermolecular interaction-supported sol-gel transition within aqueous emulsion droplets. This method enables the controllable and facile generation of PCMs through a single emulsification step, allowing for the facile production of PCMs with various materials and sizes, as well as controllable structures and mechanical properties. Moreover, this PCM fabrication method holds great promise for diverse biomedical applications. The interior of the PCM not only supports the encapsulation and proliferation of bacteria but also facilitates the encapsulation of eukaryotic cells after transforming the system into an all-aqueous emulsion. Furthermore, through appropriate surface functionalization, the PCMs effectively activate T cells in vitro upon coculturing. This work represents an advancement in PCM fabrication and offers new insights and perspectives for microgel engineering.

18.
Front Microbiol ; 14: 1176500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564287

RESUMO

Thermophilic cyanobacteria play a crucial role as primary producers in hot spring ecosystems, yet their microbiological, taxonomic, and ecological characteristics are not extensively studied. This study aimed to characterize a novel strain of thermophilic cyanobacteria, PKUAC-SCTA174 (A174), using a combination of traditional polyphasic methods and modern genomic-based approaches. The study included 16S rRNA-based phylogeny, ITS secondary structure prediction, morphological and habitat analyses, as well as high-quality genome sequencing with corresponding phylogenomic analyses. The results of the 16S rRNA, 16S-23S ITS secondary structure, morphology, and habitat analyses supported the classification of the strain as a member of a novel genus within the family Oculatellaceae, closely related to Albertania and Trichotorquatus. Genomic analysis revealed the presence of a sophisticated carbon-concentrating mechanism (CCM) in the strain, involving two CO2 uptake systems NDH-I3, and NDH-I4, three types of bicarbonate transporters (BCT1, bicA, sbtA,) and two distinct putative carboxysomal carbonic anhydrases (ccaA1 and ccaA2). The expression of CCM genes was investigated with a CO2 shift experiment, indicating varying transcript abundance among different carbon uptake systems. Based on the comprehensive characterization, the strain was delineated as Thermocoleostomius sinensis, based on the botanical code. The study of the complete genome of strain A174 contributes valuable insights into the genetic characteristics of the genus Thermocoleostomius and related organisms and provides a systematic understanding of thermophilic cyanobacteria. The findings presented here offer valuable data that can be utilized for future research in taxogenomics, ecogenomics, and geogenomics.

19.
ACS Biomater Sci Eng ; 9(3): 1190-1204, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779397

RESUMO

Cells and tissues are the foundation of translational medicine. At present, one of the main technological obstacles is their preservation for long-term usage while maintaining adequate viability and function. Optimized storage techniques must be developed to make them safer to use in the clinic. Cryopreservation is the most common long-term preservation method to maintain the vitality and function of cells and tissues. But, the formation of ice crystals in cells and tissues is considered to be the main mechanism that could harm cells and tissues during freezing and thawing. To reduce the formation of ice crystals, cryoprotective agents (CPAs) must be added to the cells and tissues to achieve the cryoprotective effect. However, conventional cryopreservation of cells and tissues often needs to use toxic organic solvents as CPAs. As a result, cryopreserved cells and tissues may need to go through a time-consuming washing process to remove CPAs for further applications in translational medicine, and multiple valuable cells are potentially lost or killed. Currently, trehalose has been researched as a nontoxic CPA due to its cryoprotective ability and stability during cryopreservation. Nevertheless, trehalose is a nonpermeable CPA, and the lack of an effective intracellular trehalose delivery method has become the main obstacle to its use in cryopreservation. This article illustrated the properties, mechanisms, delivery methods, and applications of trehalose, summarized the benefits and limits of trehalose, and summed up the findings and research direction of trehalose in biomedical cryopreservation.


Assuntos
Gelo , Trealose , Trealose/química , Trealose/farmacologia , Criopreservação/métodos , Congelamento , Crioprotetores/química , Crioprotetores/farmacologia
20.
Front Vet Sci ; 10: 1201794, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303729

RESUMO

Tissue and organ transplantation continues to be an effective measure for saving the lives of certain critically ill patients. The organ preservation methods that are commonly utilized in clinical practice are presently only capable of achieving short-term storage, which is insufficient for meeting the demand for organ transplantation. Ultra-low temperature storage techniques have garnered significant attention due to their capacity for achieving long-term, high-quality preservation of tissues and organs. However, the experience of cryopreserving cells cannot be readily extrapolated to the cryopreservation of complex tissues and organs, and the latter still confronts numerous challenges in its clinical application. This article summarizes the current research progress in the cryogenic preservation of tissues and organs, discusses the limitations of existing studies and the main obstacles facing the cryopreservation of complex tissues and organs, and finally introduces potential directions for future research efforts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa