RESUMO
Proteins play a key role in biological electron transport, but the structure-function relationships governing the electronic properties of peptides are not fully understood. Despite recent progress, understanding the link between peptide conformational flexibility, hierarchical structures, and electron transport pathways has been challenging. Here, we use single-molecule experiments, molecular dynamics (MD) simulations, nonequilibrium Green's function-density functional theory (NEGF-DFT), and unsupervised machine learning to understand the role of secondary structure on electron transport in peptides. Our results reveal a two-state molecular conductance behavior for peptides across several different amino acid sequences. MD simulations and Gaussian mixture modeling are used to show that this two-state molecular conductance behavior arises due to the conformational flexibility of peptide backbones, with a high-conductance state arising due to a more defined secondary structure (beta turn or 310 helices) and a low-conductance state occurring for extended peptide structures. These results highlight the importance of helical conformations on electron transport in peptides. Conformer selection for the peptide structures is rationalized using principal component analysis of intramolecular hydrogen bonding distances along peptide backbones. Molecular conformations from MD simulations are used to model charge transport in NEGF-DFT calculations, and the results are in reasonable qualitative agreement with experiments. Projected density of states calculations and molecular orbital visualizations are further used to understand the role of amino acid side chains on transport. Overall, our results show that secondary structure plays a key role in electron transport in peptides, which provides broad avenues for understanding the electronic properties of proteins.
Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Estrutura Secundária de Proteína , Transporte de Elétrons , Peptídeos/química , Peptídeos/metabolismo , Ligação de HidrogênioRESUMO
Bacterial flagella and type IV pili (TFP) are surface appendages that enable motility and mechanosensing through distinct mechanisms. These structures were previously thought to have no components in common. Here, we report that TFP and some flagella share proteins PilO, PilN, and PilM, which we identified as part of the Helicobacter pylori flagellar motor. H. pylori mutants lacking PilO or PilN migrated better than wild type in semisolid agar because they continued swimming rather than aggregated into microcolonies, mimicking the TFP-regulated surface response. Like their TFP homologs, flagellar PilO/PilN heterodimers formed a peripheral cage that encircled the flagellar motor. These results indicate that PilO and PilN act similarly in flagella and TFP by differentially regulating motility and microcolony formation when bacteria encounter surfaces.
Assuntos
Proteínas de Bactérias , Fímbrias Bacterianas , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Bactérias , Flagelos/fisiologiaRESUMO
Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.
Assuntos
Leptina , Ossificação Heterotópica , Animais , Camundongos , Leptina/genética , Ligantes , Camundongos Endogâmicos C57BL , Osteogênese , Receptores para Leptina/genética , Receptores para Leptina/metabolismoRESUMO
Breeding has dramatically changed the plant architecture of wheat (Triticum aestivum), resulting in the development of high-yielding varieties adapted to modern farming systems. However, how wheat breeding shaped the genomic architecture of this crop remains poorly understood. Here, we performed a comprehensive comparative analysis of a whole-genome resequencing panel of 355 common wheat accessions (representing diverse landraces and modern cultivars from China and the United States) at the phenotypic and genomic levels. The genetic diversity of modern wheat cultivars was clearly reduced compared to landraces. Consistent with these genetic changes, most phenotypes of cultivars from China and the United States were significantly altered. Of the 21 agronomic traits investigated, 8 showed convergent changes between the 2 countries. Moreover, of the 207 loci associated with these 21 traits, more than half overlapped with genomic regions that showed evidence of selection. The distribution of selected loci between the Chinese and American cultivars suggests that breeding for increased productivity in these 2 regions was accomplished by pyramiding both shared and region-specific variants. This work provides a framework to understand the genetic architecture of the adaptation of wheat to diverse agricultural production environments, as well as guidelines for optimizing breeding strategies to design better wheat varieties.
Assuntos
Genoma de Planta , Triticum , Estados Unidos , Triticum/genética , Genoma de Planta/genética , Melhoramento Vegetal , Fenótipo , China , Variação GenéticaRESUMO
Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production demands. Nuclease-dead Cas9 (dCas9), a variant of active Cas9, offers a versatile platform for the precise control of genome function without DNA cleavage. Notably, however, an effective and universal dCas9-based transcriptional repression system remains unavailable in plants. The noncanonical histone acetyltransferase TENDRIL-LESS (CsTEN) is responsible for chromatin loosening and histone modification in cucumber (Cucumis sativus). In this study, we engineered a gene regulation tool by fusing TEN and its truncated proteins with dCas9. The full-length dCas9-TEN protein substantially repressed gene expression, with the N-terminal domain identified as the core repression domain. We subsequently validated the specificity and efficacy of this system through both transient infection and genetic transformation in cucumber and Arabidopsis (Arabidopsis thaliana). The electrophoretic mobility shift assay (EMSA) revealed the ability of the N-terminal domain of TEN to bind to chromatin, which may promote target binding of the dCas9 complex and enhance the transcriptional repression effect. Our tool enriches the arsenal of genetic regulation tools available for precision breeding in crops.
Assuntos
Arabidopsis , Proteína 9 Associada à CRISPR , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Cucumis sativus/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Cromatina/metabolismo , Cromatina/genéticaRESUMO
Outer membrane vesicles (OMVs) are released from the outer membranes of Gram-negative bacteria during infection and modulate host immunity during host-pathogen interactions. The mechanisms by which OMVs are perceived by plants and affect host immunity are unclear. Here, we used the pathogen Xanthomonas campestris pv. campestris to demonstrate that OMV-plant interactions at the Arabidopsis thaliana plasma membrane (PM) modulate various host processes, including endocytosis, innate immune responses, and suppression of pathogenesis by phytobacteria. The lipid phase of OMVs is highly ordered and OMVs directly insert into the Arabidopsis PM, thereby enhancing the plant PM's lipid order; this also resulted in strengthened plant defenses. Strikingly, the integration of OMVs into the plant PM is host nanodomain- and remorin-dependent. Using coarse-grained simulations of molecular dynamics, we demonstrated that OMV integration into the plant PM depends on the membrane lipid order. Our computational simulations further showed that the saturation level of the OMV lipids could fine-tune the enhancement of host lipid order. Our work unraveled the mechanisms underlying the ability of OMVs produced by a plant pathogen to insert into the host PM, alter host membrane properties, and modulate plant immune responses.
Assuntos
Arabidopsis/imunologia , Membrana Externa Bacteriana/imunologia , Interações Hospedeiro-Patógeno , Imunidade Vegetal , Xanthomonas campestris/fisiologiaRESUMO
The flagellar motor stator is an ion channel nanomachine that assembles as a ring of the MotA5MotB2 units at the flagellar base. The role of accessory proteins required for stator assembly and activation remains largely enigmatic. Here, we show that one such assembly factor, the conserved protein FliL, forms an integral part of the Helicobacter pylori flagellar motor in a position that colocalizes with the stator. Cryogenic electron tomography reconstructions of the intact motor in whole wild-type cells and cells lacking FliL revealed that the periplasmic domain of FliL (FliL-C) forms 18 circumferentially positioned rings integrated with the 18 MotAB units. FliL-C formed partial rings in the crystal, and the crystal structure-based full ring model was consistent with the shape of the rings observed in situ. Our data suggest that each FliL ring is coaxially sandwiched between the MotA ring and the dimeric periplasmic MotB moiety of the stator unit and that the central hole of the FliL ring has density that is consistent with the plug/linker region of MotB in its extended, active conformation. Significant structural similarities were found between FliL-C and stomatin/prohibitin/flotillin/HflK/C domains of scaffolding proteins, suggesting that FliL acts as a scaffold. The binding energy released upon association of FliL with the stator units could be used to power the release of the plug helices. The finding that isolated FliL-C forms stable partial rings provides an insight into the putative mechanism by which the FliL rings assemble around the stator units.
Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Helicobacter pylori/fisiologia , Proteínas de Membrana/genética , Modelos Moleculares , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Complexos Multiproteicos/química , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Relação Estrutura-AtividadeRESUMO
The bacterial chemotaxis system is a well-understood signaling pathway that promotes bacterial success. Chemotaxis systems comprise chemoreceptors and the CheA kinase, linked by CheW or CheV scaffold proteins. Scaffold proteins provide connections between chemoreceptors and CheA and also between chemoreceptors to create macromolecular arrays. Chemotaxis is required for host colonization by many microbes, including the stomach pathogen Helicobacter pylori. This bacterium builds chemoreceptor-CheA contacts with two distinct scaffold proteins, CheW and CheV1. H. pylori cheW or cheV1 deletion mutants both lose chemoreceptor array formation, but show differing semisolid agar chemotaxis assay behaviors: ∆cheW mutants exhibit total migration failure, whereas ∆cheV1::cat mutants display a 50% reduction. On investigating these varied responses, we found that both mutants initially struggle with migration. However, over time, ∆cheV1::cat mutants develop a stable, enhanced migration capability, termed "migration-able" (Mig+). Whole-genome sequencing analysis of four distinct ∆cheV1::cat Mig+ strains identified single-nucleotide polymorphisms (SNPs) in hpg27_252 (hp0273) that were predicted to truncate the encoded protein. Computational analysis of the hpg27_252-encoded protein revealed it encoded a hypothetical protein that was a remote homolog of the PilO Type IV filament membrane alignment complex protein. Although H. pylori lacks Type IV filaments, our analysis showed it retains an operon of genes for homologs of PilO, PilN, and PilM. Deleting hpg27_252 in the ∆cheV1::cat or wild type strain resulted in enhanced migration in semisolid agar. Our study thus reveals that while cheV1 mutants initially have significant migration defects, they can recover the migration ability through genetic suppressors, highlighting a complex regulatory mechanism in bacterial migration. IMPORTANCE: Chemotactic motility, present in over half of bacteria, depends on chemotaxis signaling systems comprising receptors, kinases, and scaffold proteins. In Helicobacter pylori, a stomach pathogen, chemotaxis is crucial for colonization, with CheV1 and CheW as key scaffold proteins. While both scaffolds are essential for building chemoreceptor complexes, their roles vary in other assays. Our research reexamines cheV1 mutants' behavior in semisolid agar, a standard chemotaxis test. Initially, cheV1 mutants exhibited defects similar to those of cheW mutants, but they evolved genetic suppressors that enhanced migration. These suppressors involve mutations in a previously uncharacterized gene, unknown in motility behavior. Our findings highlight the significant chemotaxis defects in cheV1 mutants and identify new elements influencing bacterial motility.
Assuntos
Proteínas de Escherichia coli , Helicobacter pylori , Proteínas de Bactérias/genética , Helicobacter pylori/genética , Ágar , Quimiotaxia/fisiologia , Células Quimiorreceptoras , Proteínas de Membrana/genética , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Histidina QuinaseRESUMO
Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide, characterized by excess lipid deposition. Insulin resistance (IR) serves as a fundamental pathogenic factor in MAFLD. However, currently, there are no approved specific agents for its treatment. Farrerol, a novel compound with antioxidant and anti-inflammatory effects, has garnered significant attention in recent years due to its hepatoprotective properties. Despite this, the precise underlying mechanisms of action remain unclear. In this study, a network pharmacology approach predicted protein tyrosine phosphatase non-receptor type 1 (PTPN1) as a potential target for farrerol's action in the liver. Subsequently, the administration of farrerol improved insulin sensitivity and glucose tolerance in MAFLD mice. Furthermore, farrerol alleviated lipid accumulation by binding to PTPN1 and reducing the dephosphorylation of the insulin receptor (INSR) in HepG2 cells and MAFLD mice. Thus, the phosphoinositide 3-kinase/serine/threonine-protein kinases (PI3K/AKT) signalling pathway was active, leading to downstream protein reduction. Overall, the study demonstrates that farrerol alleviates insulin resistance and hepatic steatosis of MAFLD by targeting PTPN1.
Assuntos
Resistência à Insulina , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Humanos , Camundongos , Células Hep G2 , Masculino , Transdução de Sinais/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Insulina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosforilação/efeitos dos fármacosRESUMO
Structural isomers of atomically precise metal nanoclusters are highly sought after for investigating structure-property relationships in nanostructured materials. However, they are extremely rare, particularly those of alloys, primarily due to the challenges in their synthesis and structural characterization. Herein, for the first time, a pair of bimetallic isomeric AgCu nanoclusters has been controllably synthesized and structurally characterized. These two isomers share an identical molecular formula, Ag20Cu12(C≡CR)24 (denoted as Ag20Cu12-1 and Ag20Cu12-2; HC≡CR is 3,5-bis(trifluoromethyl)phenylacetylene). Single-crystal X-ray diffraction data analysis revealed that Ag20Cu12-1 possesses an Ag17Cu4 core composed of two interpenetrating hollow Ag11Cu2 structures. This core is stabilized by four different types of surface motifs: eight -C≡CR, one Cu(C≡CR)2, one Ag3Cu3(C≡CR)6, and two Cu2(C≡CR)4 units. Ag20Cu12-2 features a bitetrahedron Ag14 core, which is stabilized by three Ag2Cu4(C≡CR)8 units. Interestingly, Ag20Cu12-2 undergoes spontaneous transformation to Ag20Cu12-1 in the solution-state. Density functional theory calculations explain the electronic and optical properties and confirm the higher relative stability of Ag20Cu12-1 compared to Ag20Cu12-2. The controlled synthesis and structural isomerism of alloy nanoclusters presented in this work will stimulate and broaden research on nanoscale isomerism.
RESUMO
Precisely controlling the directional motion trajectories of droplets on anisotropic 3D functional surfaces has great application potential in self-cleaning, drug delivery, and droplet power generation, but it also faces huge challenges. Herein, inspired by the microcone structure in the heart of sunflowers, a nanoneedle-modified microcone array surface (NMAS) is reported. The surface is created using a combination of nanosecond laser direct engraving and electroforming and is subsequently fluorinated. Through programmable control of the laser spot, the geometric parameters and inclination angle of the microcone can be quickly and finely adjusted, thereby achieving precise control of the droplet bouncing trajectory. The results show that droplets can achieve programmable multiple bouncing behaviors on patterned functional surfaces, including gravity-defying hopping and directional water transport. It is worth noting that this functional surface has delayed freezing and anti-freezing effects. Furthermore, this functional surface has a wide range of potential applications, including surface self-cleaning, droplet capture, and droplet-based chemical microreactions, especially in the field of anti-icing operations. This opens up a new way for the directional transport of droplets on biomimetic functional surfaces.
RESUMO
All weather, high-efficiency, energy-saving anti-icing/de-icing materials are of great importance for solving the problem of ice accumulation on outdoor equipment surfaces. In this study, a composite material with energy storage, active electro-/photo-thermal de-icing and passive super-hydrophobic anti-icing properties is proposed. Fluorinated epoxy resin and MWCNTs/PTFE particles are used to prepare the top multifunctional anti-icing/de-icing layer, which exhibited super-hydrophobicity with water contact angle greater than 155° and conductivity higher than 69 S m-1. The super-hydrophobic durability of the top layer is verified through tape peeling and sandpaper abrasion tests. The surface can be heated by applying on voltage or light illumination, showing efficient electro-/photo-thermal and all-day anti-icing/de-icing performance. The oleogel material at the bottom layer is capable to absorb energy during heating process and release it during cooling process by phase transition, which greatly delayed the freezing time and saved energy. The icing test of single ice droplet, electro-/photo-thermal de-icing and defrosting tests also proved the high efficiency and energy saving of the anti-icing/de-icing strategy. This study provided a new way to manufacture multi-functional materials for practical anti-icing/de-icing applications.
RESUMO
Cyclo-diphenylalanine (cFF) is a symmetrical aromatic diketopiperazine (DKP) found wide-spread in microbes, plants, and resulting food products. As different bioactivities continue being discovered and relevant food and pharmaceutical applications gradually emerge for cFF, there is a growing need for establishing convenient and efficient methods to access this type of compound. Here, we present a robust cFF production system which entailed stepwise engineering of the filamentous fungal strain Aspergillus nidulans A1145 as a heterologous expression host. We first established a preliminary cFF producing strain by introducing the heterologous nonribosomal peptide synthetase (NRPS) gene penP1 to A. nidulans A1145. Key metabolic pathways involving shikimate and aromatic amino acid biosynthetic support were then engineered through a combination of gene deletions of competitive pathway steps, over-expressing feedback-insensitive enzymes in phenylalanine biosynthesis, and introducing a phosphoketolase-based pathway, which diverted glycolytic flux toward the formation of erythrose 4-phosphate (E4P). Through the stepwise engineering of A. nidulans A1145 outlined above, involving both heterologous pathway addition and native pathway metabolic engineering, we were able to produce cFF with titers reaching 611 mg/L in shake flask culture and 2.5 g/L in bench-scale fed-batch bioreactor culture. Our study establishes a production platform for cFF biosynthesis and successfully demonstrates engineering of phenylalanine derived diketopiperazines in a filamentous fungal host.
Assuntos
Aspergillus nidulans , Dipeptídeos , Engenharia Metabólica , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Reatores Biológicos , Fenilalanina/genética , Fenilalanina/metabolismoRESUMO
After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Masculino , Feminino , Estudos Longitudinais , China/epidemiologia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Anticorpos Neutralizantes , Cinética , Anticorpos Antivirais/sangue , Reinfecção/epidemiologiaRESUMO
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants raises concerns regarding the effectiveness of immunity acquired from previous Omicron subvariants breakthrough infections (BTIs) or reinfections (RIs) against the current circulating Omicron subvariants. In this study, we prospectively investigate the dynamic changes of virus-specific antibody and T cell responses among 77 adolescents following Omicron BA.2.3 BTI with or without subsequent Omicron BA.5 RI. Notably, the neutralizing antibodies (NAbs) titers against various detected SARS-CoV-2 variants, especially the emerging Omicron CH.1.1, XBB.1.5, XBB.1.16, EG.5.1, and JN.1 subvariants, exhibited a significant decrease along the time. A lower level of IgG and NAbs titers post-BTI was found to be closely associated with subsequent RI. Elevated NAbs levels and shortened antigenic distances were observed following Omicron BA.5 RI. Robust T cell responses against both Omicron BA.2- and CH.1.1-spike peptides were observed at each point visited. The exposure to Omicron BA.5 promoted phenotypic differentiation of virus-specific memory T cells, even among the non-seroconversion adolescents. Therefore, updated vaccines are needed to provide effective protection against newly emerging SARS-CoV-2 variants among adolescents.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Células T de Memória , Reinfecção , SARS-CoV-2 , Humanos , Adolescente , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Masculino , Reinfecção/imunologia , Reinfecção/virologia , Feminino , Células T de Memória/imunologia , Estudos Prospectivos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Formação de Anticorpos , Glicoproteína da Espícula de Coronavírus/imunologia , Memória Imunológica , Criança , Linfócitos T/imunologiaRESUMO
The plant cell wall (CW) is one of the most important physical barriers that phytopathogens must conquer to invade their hosts. This barrier is a dynamic structure that responds to pathogen infection through a complex network of immune receptors, together with CW-synthesizing and CW-degrading enzymes. Callose deposition in the primary CW is a well-known physical response to pathogen infection. Notably, callose and cellulose biosynthesis share an initial substrate, UDP-glucose, which is the main load-bearing component of the CW. However, how these 2 critical biosynthetic processes are balanced during plant-pathogen interactions remains unclear. Here, using 2 different pathogen-derived molecules, bacterial flagellin (flg22) and the diffusible signal factor (DSF) produced by Xanthomonas campestris pv. campestris, we show a negative correlation between cellulose and callose biosynthesis in Arabidopsis (Arabidopsis thaliana). By quantifying the abundance of callose and cellulose under DSF or flg22 elicitation and characterizing the dynamics of the enzymes involved in the biosynthesis and degradation of these 2 polymers, we show that the balance of these 2 CW components is mediated by the activity of a ß-1,3-glucanase (BG2). Our data demonstrate balanced cellulose and callose biosynthesis during plant immune responses.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Reconhecimento da Imunidade Inata , Glucanos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Celulose/metabolismo , Imunidade VegetalRESUMO
Skylight polarization, inspired by the foraging behavior of insects, has been widely used for navigation for various platforms, such as robots, unmanned aerial vehicles, and others, owing to its stability and non-error-accumulation. Among the characteristics of skylight-polarized patterns, the angle of polarization (AOP) and the degree of polarization (DOP) are two of the most significant characteristics that provide abundant information regarding the position of the sun. In this study, we propose an accurate method for detecting the solar meridian for real-time bioinspired navigation through image registration. This method uses the AOP pattern to detect the solar meridian and eliminates the ambiguity between anti-solar meridian and solar meridian using the DOP pattern, resulting in an accurate heading of the observer. Simulation experiments demonstrated the superior performance of the proposed method compared to the alternative approaches. Field experiments demonstrate that the proposed method achieves real-time, robust, and accurate performance under different weather conditions with a root mean square error of 0.1° under a clear sky, 0.18° under an overcast sky with a thin layer of clouds, and 0.32° under an isolated thick cloud cover. Our findings suggest that the proposed method can be potentially used in skylight polarization for real-time and accurate navigation in GPS-denied environments.
RESUMO
A structured double-period CsI scintillation screen was successfully developed to improve its detection efficiency based on an oxidized silicon micropore array template with a period value on the order of micro-scale. The structure comprises a main structure along with a sub-structure. The main structure with a period of 8â µm was arranged in a square array consisting of square columnar scintillator units. The micropore walls between the main structure units were purposely fabricated from a SiO2-Si-SiO2 layered structure. The pore walls in commonly used single-structure with a period of 4â µm use the same layered structure composition to obtain a fair comparison. The thickness of both Si and the SiO2 layers was around 0.4â µm. The unique feature of the double structure lies in the even separation of each unit within the main structure into four square columnar scintillator sub-units. These four sub-units within each sub-structure were isolated solely by SiO2 layers with a thickness of approximately 0.8â µm. As a result, the X-ray-induced optical luminescence intensity of the double-structure screen exhibited a 31% increase compared to the corresponding single-structure scintillation screen. In X-ray imaging, a spatial resolution of 109 lp/mm was achieved, which closely matched the results obtained with the single-structure CsI screen. Furthermore, the detective quantum efficiency also displayed a notable improvement.
RESUMO
We have introduced and demonstrated a three-dimensional, multidirectional photodetector (PD) made of germanium for optoelectronic integration (OEI) systems. Building upon the fundamental physical principles of PDs, we focused on the design aspects of structure, dimensions, and doping. This led to the development of an integrated chip-level PD capable of discerning light from four different directions. Simulation verification confirmed that the key performance parameters of the four equivalent PDs meet the specified requirements. Importantly, we have identified the device's ability and strategy to evaluate light signals from different directions, as well as the impact of fluctuations in light intensity on the accuracy of the judgments. In-depth investigations into the effects of external bias, doping concentration, and doping region have been conducted to further optimize parameters, enhancing the performance of the proposed device. Overall, the current work will help improve the efficiency of PD and enhance the integration of future OEI chips.
RESUMO
In this work, we report the design and synthesis of two chain-like pentanuclear cyanido-bridged complexes trans-[Ru(bpy)2(µ-CN)2][cis-Ru(bpy)2(µ-NC)M(dppe)Cp*]2[PF6]4(M = Fe, 14+; M = Ru, 24+) and the electronic communication properties of their oxidized products 1m+ (m = 6, 7, 8) and 2n+ (n = 5, 6, 7, 8). The single-crystal X-ray diffraction analysis of 1m+ (m = 4, 6, 7) and 24+ show that 14+ and 24+ possess a Z-type array structure, 17+ is a U-type one, and 16+ exhibits both the types. The investigations indicate that both 1 and 2 show an extraordinarily strong electronic interaction between the two side Ru across the central NC-Ru-CN, leading to the formation of a fully delocalized cyanidometal Ru-Ru-Ru bridge for both three-electron oxidized states 17+ and 27+. Moreover, it should be noted that in 1 there exists no electronic interaction between the two terminal Fe ions. Upon substitution of Fe by Ru, however, 2 exhibits an electronic interaction between the two terminal metal ions across the trinuclear cyanidometal CN-Ru-NC-Ru-CN-Ru-NC bridge which is up to 20 Å.