RESUMO
BACKGROUND: Immune-checkpoint blockade (ICB) therapy shows promise for treating aggressive triple-negative breast cancer (TNBC). However, only some patients benefit from ICB, revealing an urgent need for identifying novel strategies for sensitizing patients to ICB. Previously, the authors demonstrated that type-I protein arginine methyltransferases (PRMTs) regulated antiviral innate-immune responses in TNBC by altering RNA splicing. This study aimed to explore the effects of targeting type-I PRMTs on the tumor microenvironment (TME) and the efficacy of ICB therapy against TNBC. METHODS: Single-cell transcriptomic analysis was performed to investigate the effects of type-I PRMT inhibition on the TME, especially T-cell subsets. Single-cell T-cell receptor sequencing was performed to analyze the diversity and dynamics of the T-cell repertoire. A syngeneic murine model of TNBC was used to evaluate the therapeutic efficacy and immune memory effect of combining a type-I PRMT inhibitor (MS023) with an anti-programmed cell death protein 1 (PD-1) antibody. RESULTS: Type-I PRMT inhibition combined with anti-PD-1 therapy reduced tumor growth. Mechanistically, type-I PRMT inhibition reshaped the TME. Increased CD8 T-cell infiltration was verified using flow cytometry. Increased clonotypes and clonal diversity were also observed after MS023 treatment, which contributed to immune memory following combination treatment. CONCLUSIONS: Targeting type-I PRMT can potentially improve immunotherapeutic efficacies in patients with TNBC. By enhancing the tumor immunogenicity and promoting a more favorable immune microenvironment, this combined approach may enable more patients with TNBC to benefit from immunotherapies.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Receptor de Morte Celular Programada 1 , Proteína-Arginina N-Metiltransferases/genética , Imunoterapia , Morte Celular , Microambiente TumoralRESUMO
Verticillium wilt (VW) caused by the soil-borne fungal pathogen Verticillium dahliae reduces cotton productivity and quality. Numerous studies have explored the genetic and molecular mechanisms regulating VW resistance in cotton, but the role and mechanism of strigolactone (SL) is still elusive. We investigated the function of SL in cotton's immune response to V. dahliae infection by exogenously applying SL analog, blocking or enhancing biosynthesis of endogenous SLs in combination with comparative transcriptome analysis and by exploring cross-talk between SL and other phytohormones. Silencing GhDWARF27 and applying the SL analog GR24 or overexpressing GhDWARF27 decreased and enhanced V. dahliae resistance, respectively. Transcriptome analysis revealed SL-mediated activation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signaling pathways. Enhanced ABA biosynthesis and signaling led to increased activity of antioxidant enzymes and reduced buildup of excess reactive oxygen species. Enhanced JA biosynthesis and signaling facilitated transcription of JA-dependent disease resistance genes. One of the components of the SL signal transduction pathway, GhD53, was found to interact with GhNCED5 and GhLOX2, the key enzymes of ABA and JA biosynthesis, respectively. We revealed the molecular mechanism underlying SL-enabled V. dahliae resistance and provided potential solutions for improving VW resistance in cotton.
RESUMO
This study aimed to evaluate whether there is a causal relationship between autoimmune thyroid disorders (AITDs) and telomere length (TL) in the European population and whether there is reverse causality. In this study, Mendelian randomization (MR) and colocalization analysis were conducted to assess the potential causal relationship between AITDs and TL using summary statistics from large-scale genome-wide association studies, followed by analysis of the relationship between TL and thyroid stimulating hormone and free thyroxine (FT4) to help interpret the findings. The inverse variance weighted (IVW) method was used to estimate the causal estimates. The weighted median, MR-Egger and leave-one-out methods were used as sensitivity analyses. The IVW method results showed a significant causal relationship between autoimmune hyperthyroidism and TL (ß = -1.93 × 10-2 ; p = 4.54 × 10-5 ). There was no causal relationship between autoimmune hypothyroidism and TL (ß = -3.99 × 10-3 ; p = 0.324). The results of the reverse MR analysis showed that genetically TL had a significant causal relationship on autoimmune hyperthyroidism (IVW: odds ratio (OR) = 0.49; p = 2.83 × 10-4 ) and autoimmune hypothyroidism (IVW: OR = 0.86; p = 7.46 × 10-3 ). Both horizontal pleiotropy and heterogeneity tests indicated the validity of our bidirectional MR study. Finally, colocalization analysis suggested that there were shared causal variants between autoimmune hyperthyroidism and TL, further highlighting the robustness of the results. In conclusion, autoimmune hyperthyroidism may accelerate telomere attrition, and telomere attrition is a causal factor for AITDs.
Assuntos
Doença de Graves , Doença de Hashimoto , Hipotireoidismo , Tireoidite Autoimune , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Telômero/genética , Hipotireoidismo/genéticaRESUMO
BACKGROUND: In recent years, with benefits from the continuous improvement of clinical technology and the advantage of fertility preservation, the application of embryo cryopreservation has been growing rapidly worldwide. However, amidst this growth, concerns about its safety persist. Numerous studies have highlighted the elevated risk of perinatal complications linked to frozen embryo transfer (FET), such as large for gestational age (LGA) and hypertensive disorders during pregnancy. Thus, it is imperative to explore the potential risk of embryo cryopreservation and its related mechanisms. METHODS: Given the strict ethical constraints on clinical samples, we employed mouse models in this study. Three experimental groups were established: the naturally conceived (NC) group, the fresh embryo transfer (Fresh-ET) group, and the FET group. Blastocyst formation rates and implantation rates were calculated post-embryo cryopreservation. The impact of FET on fetal growth was evaluated upon fetal and placental weight. Placental RNA-seq was conducted, encompassing comprehensive analyses of various comparisons (Fresh-ET vs. NC, FET vs. NC, and FET vs. Fresh-ET). RESULTS: Reduced rates of blastocyst formation and implantation were observed post-embryo cryopreservation. Fresh-ET resulted in a significant decrease in fetal weight compared to NC group, whereas FET reversed this decline. RNA-seq analysis indicated that the majority of the expression changes in FET were inherited from Fresh-ET, and alterations solely attributed to embryo cryopreservation were moderate. Unexpectedly, certain genes that showed alterations in Fresh-ET tended to be restored in FET. Further analysis suggested that this regression may underlie the improvement of fetal growth restriction in FET. The expression of imprinted genes was disrupted in both FET and Fresh-ET groups. CONCLUSION: Based on our experimental data on mouse models, the impact of embryo cryopreservation is less pronounced than other in vitro manipulations in Fresh-ET. However, the impairment of the embryonic developmental potential and the gene alterations in placenta still suggested it to be a risky operation.
Assuntos
Criopreservação , Transferência Embrionária , Placenta , Criopreservação/métodos , Feminino , Gravidez , Animais , Camundongos , Transferência Embrionária/métodos , Placenta/metabolismo , Embrião de Mamíferos , Implantação do Embrião/genética , Desenvolvimento Fetal/genética , Blastocisto/metabolismoRESUMO
KEY MESSAGE: Two major genetic loci, qTN5.1 and qAB9.1, were identified and finely mapped to the 255 Kb region with one potential candidate gene for tiller number and the 521 Kb region with eight candidate genes for axillary branch number, respectively. Vegetative branching including tillering and axillary branching are vital traits affecting both the plant architecture and the biomass in cereal crops. However, the mechanism underlying the formation of vegetative branching in foxtail millet is largely unknown. Here, a foxtail millet cultivar and its bushy wild relative Setaria viridis accession were used to construct segregating populations to identify candidate genes regulating tiller number and axillary branch number. Transcriptome analysis using vegetative branching bud samples of parental accessions was performed, and key differentially expressed genes and pathways regulating vegetative branching were pointed out. Bulk segregant analysis on their F2:3 segregating population was carried out, and a major QTL for tiller number (qTN5.1) and two major QTLs for axillary branch number (qAB2.1 and qAB9.1) were detected. Fine-mapping strategy was further performed on F2:4 segregate population, and Seita.5G356600 encoding ß-glucosidase 11 was identified as the promising candidate gene for qTN5.1, and eight genes, especially Seita.9G125300 and Seita.9G125400 annotated as B-S glucosidase 44, were finally identified as candidate genes for regulating axillary branching. Findings in this study will help to elucidate the genetic basis of the vegetative branching formation of foxtail millet and lay a foundation for breeding foxtail millet varieties with ideal vegetative branching numbers.
Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Locos de Características QuantitativasRESUMO
Shale contains numerous organic micropores with significant potential for CO2 storage. To precisely evaluate the CO2 storage potential of shale reservoirs, it is essential to accurately quantify the adsorption of CO2 within these pores. This study used Grand Canonical Monte Carlo (GCMC) molecular simulations to analyze the CO2 adsorption behavior in organic micropores of varying sizes. The study clarified the number and width of the CO2 adsorption layers in micropores of various sizes and proposed a method for segmenting the multilayer adsorption structure. Additionally, the classic Ono-Kondo lattice (OK) model was extended to characterize pore-filling adsorption, incorporating solid-gas and gas-gas interactions. Accurate characterization of CO2 multilayer adsorption and precise calculation of CO2 absolute adsorption in micropores were achieved. Results indicate that CO2 exhibits pore-filling adsorption behavior in organic micropores, forming a multilayer adsorption structure governed by the pore size. Following symmetry principles, the adsorption layer structure in organic micropores can be simplified to a maximum of three layers. When only one adsorption layer forms, its width equals the gas-accessible pore size. For two or more layers, the width of the original layer stabilizes as additional layers form. The stable adsorption layer widths, from nearest to farthest from the pore wall, are 0.33, 0.45, and 0.39 nm. The improved OK model accurately describes CO2 excess and absolute adsorption isotherms across different pore sizes and calculates the CO2 density in each adsorption layer, showing high consistency with GCMC simulation results. These findings highlight the importance of understanding the CO2 multilayer adsorption structure for accurately estimating CO2 adsorption in organic micropores.
RESUMO
BACKGROUND: Mild hypothyroidism, including subclinical hypothyroidism and isolated maternal hypothyroxinemia, is fairly common in pregnant women, but its impact on pregnancy outcomes is less clear, especially mild hypothyroidism in late pregnancy. OBJECTIVE: To evaluate the impact of subclinical hypothyroidism and isolated maternal hypothyroxinemia in the first and third trimesters, respectively, on obstetric and perinatal outcomes. STUDY DESIGN: This large prospective study was conducted at the International Peace Maternity and Child Health Hospital in Shanghai; 52,027 pregnant women who underwent the first-trimester antenatal screening at International Peace Maternity and Child Health Hospital were consecutively enrolled from January 2013 to December 2016. To evaluate the impact of maternal subclinical hypothyroidism and isolated maternal hypothyroxinemia in the first trimester on pregnancy outcomes, participants were divided into 3 groups according to thyroid function in the first trimester: first-trimester euthyroidism group (n=33,130), first-trimester subclinical hypothyroidism group (n=884), and first-trimester isolated maternal hypothyroxinemia group (n=846). Then, to evaluate the impact of maternal subclinical hypothyroidism and isolated maternal hypothyroxinemia in the third trimester on pregnancy outcomes, the first-trimester euthyroidism group was subdivided into 3 groups according to thyroid function in the third trimester: third-trimester euthyroidism group (n=30,776), third-trimester subclinical hypothyroidism group (n=562), and third-trimester isolated maternal hypothyroxinemia group (n=578). Obstetric and perinatal outcomes, including preterm birth, preeclampsia, gestational hypertension, gestational diabetes mellitus, large for gestational age, small for gestational age, macrosomia, cesarean delivery, and fetal demise were measured and compared between those in either subclinical hypothyroidism/isolated maternal hypothyroxinemia group and euthyroid group. Binary logistic regression was used to assess the association of subclinical hypothyroidism or isolated maternal hypothyroxinemia with these outcomes. RESULTS: Thirty-four thousand eight hundred sixty pregnant women who had first (weeks 8-14) and third trimester (weeks 30-35) thyrotropin and free thyroxine concentrations available were included in the final analysis. Maternal subclinical hypothyroidism in the first trimester was linked to a lower risk of gestational diabetes mellitus (adjusted odds ratio 0.64, 95% confidence interval 0.50-0.82) compared with the euthyroid group. However, third-trimester subclinical hypothyroidism is associated with heightened rates of preterm birth (adjusted odds ratio 1.56, 95% confidence interval 1.10-2.20), preeclampsia (adjusted odds ratio 2.23, 95% confidence interval 1.44-3.45), and fetal demise (adjusted odds ratio 7.00, 95% confidence interval 2.07-23.66) compared with the euthyroid group. Isolated maternal hypothyroxinemia in the first trimester increased risks of preeclampsia (adjusted odds ratio 2.14, 95% confidence interval 1.53-3.02), gestational diabetes mellitus (adjusted odds ratio 1.45, 95% confidence interval 1.21-1.73), large for gestational age (adjusted odds ratio 1.64, 95% confidence interval 1.41-1.91), macrosomia (adjusted odds ratio 1.85, 95% confidence interval 1.49-2.31), and cesarean delivery (adjusted odds ratio 1.35, 95% confidence interval 1.06-1.74), while isolated maternal hypothyroxinemia in the third trimester increased risks of preeclampsia (adjusted odds ratio 2.85, 95% confidence interval 1.97-4.12), large for gestational age (adjusted odds ratio 1.49, 95% confidence interval 1.23-1.81), and macrosomia (adjusted odds ratio 1.60, 95% confidence interval 1.20-2.13) compared with the euthyroid group. CONCLUSION: This study indicates that while first-trimester subclinical hypothyroidism did not elevate the risk for adverse pregnancy outcomes, third-trimester subclinical hypothyroidism was linked to several adverse pregnancy outcomes. Isolated maternal hypothyroxinemia in the first and third trimesters was associated with adverse pregnancy outcomes, yet the impact varied by trimester. These results suggest the timing of mild hypothyroidism in pregnancy may be pivotal in determining its effects on adverse pregnancy outcomes and underscore the importance of trimester-specific evaluations of thyroid function.
RESUMO
Breast cancer is the most common malignant tumor that threatens women's life and health, and metastasis often occurs in the advanced stage of breast cancer, leading to pathological bone destruction and seriously reducing patient quality of life. In this study, we coupled chlorin e6 (Ce6) with mono-(6-amino-6-deoxy)-beta-cyclodextrin (ß-CD) to form Ce6-CD, and combined ferrocene with the FFVLG3C peptide and PEG chains to form the triblock molecule Fc-pep-PEG. In addition, the IDO-1 inhibitor NLG919 was loaded with Ce6-CD and Fc-pep-PEG to construct the supramolecular nanoparticle NLG919@Ce6-CD/Fc-pep-PEG (NLG919@CF). After laser irradiation, Ce6 produced robust reactive oxidative species to induce tumor cell apoptosis. Simultaneously, ferrocene became charged, and Fc-pep-PEG dissociated from the spherical nanoparticles, enabling their transformation into nanofibers, which increased both the retention effect and the induction of ferroptosis. The released NLG919 reduced the number of regulatory T cells (Tregs) and restored the function of cytotoxic T lymphocytes (CTLs) by inhibiting the activity of IDO-1. Moreover, combined administration with an anti-PD-1 antibody further relieved immune suppression in the tumor microenvironment. This article presents a new strategy for the clinical treatment of breast cancer with bone metastasis and osteolysis.
Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Neoplasias Ósseas/secundário , Neoplasias Ósseas/tratamento farmacológico , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Porfirinas/química , Porfirinas/uso terapêutico , Porfirinas/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Clorofilídeos , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Nanopartículas/química , Compostos Ferrosos/química , Compostos Ferrosos/uso terapêutico , Terapia de Imunossupressão/métodosRESUMO
Natural medicines play a crucial role in clinical drug applications, serving as a primary traditional Chinese medicine for the clinical treatment of liver fibrosis. Understanding the in vivo metabolic process of the Fuzheng Huayu (FZHY) formula is essential for delving into its material basis and mechanism. In recent years, there has been a growing body of research focused on the mechanisms and component analysis of FZHY. This study aimed to examine the pharmacokinetics of FZHY in healthy volunteers following oral administration. Blood samples were collected at designated time intervals after the oral intake of 9.6-g FZHY tablets. A UHPLC-Q/Exactive method was developed to assess the plasma concentrations of five components post-FZHY ingestion. The peak time for all components occurred within 10 min. The peak concentration (Cmax ) values for amygdalin, schisandrin, and schisandrin A ranged from 3.47 to 28.80 ng/mL, with corresponding AUC(0-t) values ranging from 10.63 to 103.20 ng h/mL. For schisandrin B and prunasin, Cmax values were in the range of 86.52 to 229.10 ng/mL, and their AUC(0-t) values ranged from 375.26 to 1875.54 ng h/mL, indicating significant exposure within the body. These findings demonstrate that the developed method enables rapid and accurate detection and quantification of the five components in FZHY, offering a valuable reference for its clinical study.
Assuntos
Medicamentos de Ervas Chinesas , Humanos , Medicamentos de Ervas Chinesas/farmacocinética , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Medicina Tradicional Chinesa/métodos , Administração Oral , ComprimidosRESUMO
BACKGROUND: Breakthrough cancer pain (BTcP) has a negative impact on patients' quality of life, general activities, and is related to worse clinical outcomes. Fentanyl inhalant is a hand-held combination drug-device delivery system providing rapid, multi-dose (25µg/dose) administration of fentanyl via inhalation of a thermally generated aerosol. This multicenter, randomized, placebo-controlled, multiple-crossover, double-blind study evaluated the efficacy, safety, and tolerability of fentanyl inhalant in treating BTcP in opioid-tolerant patients. METHODS: The trial was conducted in opioid-tolerant cancer patients with 1 ~ 4 BTcP outbursts per day. Each patient was treated and observed for 6 episodes of BTcP (4 with fentanyl inhalant, 2 with placebo). During each episode of targeted BTcP, patients were allowed up to six inhalations, with an interval of at least 4 min between doses. Primary outcome was the time-weighted sum of PID (pain intensity difference) scores at 30 min (SPID30). RESULTS: A total of 335 BTcP episodes in 59 patients were treated. The mean SPID30 was -97.4 ± 48.43 for fentanyl inhalant-treated episodes, and -64.6 ± 40.25 for placebo-treated episodes (p < 0.001). Significant differences in PID for episodes treated with fentanyl inhalant versus placebo was seen as early as 4 min and maintained for up to 60 min. The percentage of episodes reported PI (pain intensity) scores ≤ 3, a ≥ 33% or ≥ 50% reduction in PI scores at 30 min, PR30 (pain relief scores at 30 min) and SPID60 favored fentanyl inhalant over placebo. Only 4.4% of BTcP episodes required rescue medication in fentanyl inhalant group. Most AEs were of mild or moderate severity and typical of opioid drugs. CONCLUSION: Treatment with fentanyl inhalant was shown to be a promising therapeutic option for BTcP, with significant pain relief starting very soon after dosing. Confirmation of effectiveness requires a larger phase III trial. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05531422 registered on 6 September 2022 after major amendment, NCT04713189 registered on 14 January 2021.
Assuntos
Analgésicos Opioides , Dor Irruptiva , Dor do Câncer , Fentanila , Humanos , Fentanila/uso terapêutico , Fentanila/farmacologia , Fentanila/administração & dosagem , Método Duplo-Cego , Masculino , Pessoa de Meia-Idade , Feminino , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/administração & dosagem , Dor Irruptiva/tratamento farmacológico , Dor Irruptiva/etiologia , Idoso , Dor do Câncer/tratamento farmacológico , Adulto , Administração por Inalação , Estudos Cross-Over , Medição da Dor/métodos , Resultado do Tratamento , Idoso de 80 Anos ou maisRESUMO
Transient receptor potential vanilloid 4 (TRPV4) is a widely expressed cation channel that plays an important role in many physiological and pathological processes. However, most TRPV4 drugs carry a risk of side effects. Moreover, existing screening methods are not suitable for the high-throughput screening (HTS) of drugs. In this study, a cell model and HTS method for targeting TRPV4 channel drugs were established based on a calcium-activated chloride channel protein 1 Anoctamin 1 (ANO1) and a double mutant (YFP-H148Q/I152L) of the yellow fluorescent protein (YFP). Patch-clamp experiments and fluorescence quenching kinetic experiments were used to verify that the model could sensitively detect changes in intracellular Ca2+ concentration. The functionality of the TRPV4 cell model was examined through temperature variations and different concentrations of TRPV4 modulators, and the performance of the model in HTS was also evaluated. The model was able to sensitively detect changes in the intracellular Ca2+ concentration and also excelled at screening TRPV4 drugs, and the model was more suitable for HTS. We successfully constructed a drug cell screening model targeting the TRPV4 channel, which provides a tool to study the pathophysiological functions of TRPV4 in vitro.
Assuntos
Ensaios de Triagem em Larga Escala , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Anoctamina-1 , Cálcio/metabolismoRESUMO
Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype with poor prognoses and limited therapeutic options. The TATA-box binding protein associated factor 1 (TAF1) is an essential protein involved in the transcriptional regulation of cancer development and progress. However, the therapeutic potential and underlying mechanism of targeting TAF1 in TNBC remain unknown. Here, using chemical probe BAY-299, we identify that TAF1 inhibition leads to the induction of endogenous retrovirus (ERVs) expression and double-stranded RNA (dsRNA) formation, resulting in the activation of interferon responses and cell growth suppression in a subset of TNBC, resembling anti-viral mimicry effect. This correlation between TAF1 and interferon signature was validated in three independent breast cancer patient datasets. Furthermore, we observe heterogeneous responses to TAF1 inhibition across a set of TNBC cell lines. By integrating transcriptome and proteome data, we demonstrate that high levels of proliferating cell nuclear antigen (PCNA) protein serve as a predictive biomarker associated with suppressive tumor immune responses in various cancers, which may limit the efficiency of TAF1 inhibition.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Interferons/farmacologia , Transcriptoma , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
BACKGROUND: Osteoporosis (OP) and diabetes mellitus (DM) are two major healthcare issues in the world. Numerous population based-studies have reported an increased prevalence of OP among individuals with DM, though, estimates vary significantly. PURPOSE: The objective of this study is to estimate the prevalence of OP in patients with DM. METHODS: To identify relevant literature, PubMed, Embase, Medline, CBM and Cochrane Library were searched for studies published from inception till July 2022, The search was conducted, and studies were included without countries and language restrictions. For full-text articles included in the study, the references were also independently searched. Random inverse variance-weighted models were used by Stata version 17.0 to estimate the prevalence of OP in patients with diabetes across studies. The heterogeneity was examined with I2 via the χ2 test on Cochrane's Q statistic. Subgroup analysis and meta-regression were used to explore potential sources of heterogeneity. Egger's test was used to assess publication bias. RESULTS: A high OP prevalence of 27.67% (95% confidence interval (CI) 21.37-33.98%) was found in a pooled analysis of 21 studies involving 11,603 T2DM patients. Methodological value of the included articles was high, with only three medium-quality studies and no low-quality studies. A significantly high heterogeneity (I2 = 98.5%) was observed. CONCLUSIONS: Worldwide, a high prevalence of OP was found in patients with T2DM. Therefore, strong measures to prevent and treat osteoporosis in diabetic patients are required. TRIAL REGISTRATION: This study has been registered on PROSPERO, number CRD42021286580 .
Assuntos
Diabetes Mellitus Tipo 2 , Osteoporose , Humanos , Prevalência , Osteoporose/epidemiologia , Osteoporose/etiologia , Projetos de Pesquisa , Pesquisa Qualitativa , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologiaRESUMO
Childhood maltreatment (CM) has been linked to social cognition deficits in major depressive disorder (MDD), but little is known about sex-specific effects. This study aimed to investigate the sex-specific associations of CM with social cognition in first-episode drug-naive patients with MDD. A total of 117 first-episode drug-naive patients with MDD and 134 healthy controls (HCs) were recruited and assessed for demographic and clinical characteristics. All participants completed the Childhood Trauma Questionnaire (CTQ), Toronto Alexithymia Scale (TAS-20), Interpersonal Reactivity Index-C (IRI), and Facial Emotion Recognition Test. Partial correlation analysis was used to explore the sex-specific association of CM with social cognition. Our findings revealed significant differences in the associations of CM with social cognition between males and females in MDD patients. In comparison to HCs, the associations of CM with social cognition displayed distinct and even contrasting sex-specific patterns in MDD patients. Specifically, male MDD patients exhibited unique imbalanced associations between emotional neglect and alexithymia, while both female and male MDD patients shared imbalanced associations of childhood abuse with empathy. These results emphasize the importance of considering the sex-specific associations of CM with social cognition in MDD and highlight the need for personalized interventions and treatments based on sex for MDD patients with a history of CM.
RESUMO
Breast cancer bone metastasis has become a common cancer type that still lacks an effective treatment method. Although epigenetic drugs have demonstrated promise in cancer therapy, their nontargeted accumulation and drug resistance remain nonnegligible limiting factors. Herein, we first found that icaritin had a strong synergistic effect with an epigenetic drug (JQ1) in the suppression of breast cancer, which could help to relieve drug resistance to JQ1. To improve tumor-targeted efficacy, we developed a hypoxia-cleavable, RGD peptide-modified poly(D,L-lactide-co-glycolide) (PLGA) nanoparticle (termed ARNP) for the targeted delivery of JQ1 and icaritin. The decoration of long cleavable PEG chains can shield RGD peptides during blood circulation and reduce cellular uptake at nonspecific sites. ARNP actively targets breast cancer cells via an RGD-αvß3 integrin interaction after PEG chain cleavage by responding to hypoxic tumor microenvironment. In vitro and in vivo assays revealed that ARNP exhibited good biodistribution and effectively suppressed primary tumor and bone metastasis. Meanwhile, ARNP could alleviate bone erosion to a certain extent. Furthermore, ARNP significantly inhibited pulmonary metastasis secondary to bone metastasis. The present study suggests that ARNP has great promise in the treatment of breast cancer and bone metastasis due to its simple and practical potential.
Assuntos
Neoplasias Ósseas , Nanomedicina , Humanos , Preparações Farmacêuticas , Distribuição Tecidual , Neoplasias Ósseas/tratamento farmacológico , Epigênese Genética , Microambiente TumoralRESUMO
In western medicine, obstructive sleep apnea hypopnea syndrome (OSAHS) is an increasingly serious public health hazard, which is exacerbated by the obesity epidemic and an aging population. Ancient medical literature of traditional Chinese medicine (TCM) also recorded OSAHS-like symptoms but described the disease from a completely distinct theoretical perspective. The earliest records of snoring in ancient China can be traced back 2500 years. In TCM, the pathogenesis of OSAHS can be attributed mainly to turbid phlegm and blood stasis. Various TCM prescriptions, herbal medicines, and external therapy have also been proposed for the prevention and therapy of OSAHS. Some of these strategies are still used in current clinical practice. This review highlights historical characterizations of OSAHS and the theory of TCM and also explores its therapy in TCM, which may shed light on future OSAHS research. This is the first systematic English review of the role of TCM in the treatment of OSAHS.
Assuntos
Medicina Tradicional Chinesa , Apneia Obstrutiva do Sono , Humanos , Idoso , Polissonografia , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/epidemiologia , Apneia Obstrutiva do Sono/terapia , Síndrome , Taxa Respiratória , Ronco/epidemiologia , Ronco/terapiaRESUMO
Current strategies to direct therapy-loaded nanoparticles to the brain rely on functionalizing nanoparticles with ligands which bind target proteins associated with the blood-brain barrier (BBB). However, such strategies have significant brain-specificity limitations, as target proteins are not exclusively expressed at the brain microvasculature. Therefore, novel strategies which exploit alternative characteristics of the BBB are required to overcome nonspecific nanoparticle targeting to the periphery, thereby increasing drug efficacy and reducing detrimental peripheral side effects. Here, we present a simple, yet counterintuitive, brain-targeting strategy which exploits the higher impermeability of the BBB to selectively label the brain endothelium. This is achieved by harnessing the lower endocytic rate of brain endothelial cells (a key feature of the high BBB impermeability) to promote selective retention of free, unconjugated protein-binding ligands on the surface of brain endothelial cells compared to peripheral endothelial cells. Nanoparticles capable of efficiently binding to the displayed ligands (i.e., labeled endothelium) are consequently targeted specifically to the brain microvasculature with minimal "off-target" accumulation in peripheral organs. This approach therefore revolutionizes brain-targeting strategies by implementing a two-step targeting method which exploits the physiology of the BBB to generate the required brain specificity for nanoparticle delivery, paving the way to overcome targeting limitations and achieve clinical translation of neurological therapies. In addition, this work demonstrates that protein targets for brain delivery may be identified based not on differential tissue expression, but on differential endocytic rates between the brain and periphery.
Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Células Endoteliais/metabolismo , Nanopartículas/metabolismo , Animais , Transporte Biológico , Encéfalo/irrigação sanguínea , Endotélio/metabolismo , Humanos , Ratos , Ratos Sprague-DawleyRESUMO
There have been outbreaks of SARS-CoV-2 around the world for over three years, and its variants continue to evolve. This has become a major global health threat. The main protease (Mpro, also called 3CLpro) plays a key role in viral replication and proliferation, making it an attractive drug target. Here, we have identified a novel potential inhibitor of Mpro, by applying the virtual screening of hundreds of nilotinib-structure-like compounds that we designed and synthesized. The screened compounds were assessed using SP docking, XP docking, MM-GBSA analysis, IFD docking, MD simulation, ADME/T prediction, and then an enzymatic assay in vitro. We finally identified the compound V291 as a potential SARS-CoV-2 Mpro inhibitor, with a high docking affinity and enzyme inhibitory activity. Moreover, the docking results indicate that His41 is a favorable amino acid for pi-pi interactions, while Glu166 can participate in salt-bridge formation with the protonated primary or secondary amines in the screened molecules. Thus, the compounds reported here are capable of engaging the key amino acids His41 and Glu166 in ligand-receptor interactions. A pharmacophore analysis further validates this assertion.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Biblioteca Gênica , Aminas , Aminoácidos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Simulação de Dinâmica MolecularRESUMO
Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood-brain barrier into the brain.
Assuntos
Cunninghamella , Paeonia , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Cunninghamella/metabolismo , Monoterpenos/química , Benzoatos/metabolismo , Paeonia/químicaRESUMO
KEY MESSAGE: qSI07.1, a major QTL for seed index in cotton, was fine-mapped to a 17.45-kb region, and the candidate gene GhSI7 was verified in transgenic plants. Improving production to meet human needs is a vital objective in cotton breeding. The yield-related trait seed index is a complex quantitative trait, but few candidate genes for seed index have been characterized. Here, a major QTL for seed index qSI07.1 was fine-mapped to a 17.45-kb region by linkage analysis and substitutional mapping. Only GhSI7, encoding the transcriptional regulator STERILE APETALA, was contained in the candidate region. Association test and genetic analysis indicated that an 845-bp-deletion in its intron was responsible for the seed index variation. Origin analysis revealed that this variation was unique in Gossypium hirsutum and originated from race accessions. Overexpression of GhSI7 (haplotype 2) significantly increased the seed index and organ size in cotton plants. Our findings provided a diagnostic marker for breeding and selecting cotton varieties with high seed index, and laid a foundation for further studies to understand the molecular mechanism of cotton seed morphogenesis.