RESUMO
Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.
Assuntos
Cromossomos de Plantas , Genoma de Planta , Rosa , Rosa/genética , Rosa/metabolismo , Cromossomos de Plantas/genética , Bases de Dados Genéticas , Metabolismo Secundário/genética , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biossínteseRESUMO
OBJECTIVE: To explore the potential action mechanism of Huotu Jiji Pellets (HJP) in the treatment of erectile dysfunction (ED) based on network pharmacology and molecular docking. METHODS: We identified the main effective compounds and active molecular targets of HJP from the database of Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Integrative Pharmacology-Based Research Platform of Traditional Chinese Medicine (TCMIP) and the therapeutic target genes of ED from the databases of Genecards. Then we obtained the common targets of HJP and ED using the Venny software, constructed a protein-protein interaction (PPI) network of HJP acting on ED, and screened out the core targets with the Cytoscape software. Lastly we performed GO functional enrichment and KEGG pathway enrichment analyses of the core targets followed by molecular docking of HJP and the core targets using Chem3D and AutoDock Tools and QuickVina-W software. RESULTS: A total of 64 effective compounds, 822 drug-related targets, 1 783 disease-related targets and 320 common targets were obtained in this study. PPI network analysis showed that the core targets of HJP for ED included ESR1, HSP90AA1, SRC, and STAT3. GO functional enrichment analysis indicated the involvement of the core targets in such biological processes as response to xenobiotic stimulus, positive regulation of kinase activity, and positive regulation of MAPK cascade. KEGG pathway enrichment analysis suggested that PI3K-Akt, apoptosis, MAPK, HIF-1, VEGF, autophagy and other signaling pathways may be related to the mechanism of HJP acting on ED. Molecular docking prediction exhibited a good docking activity of the key active molecules of HJP with the core targets. CONCLUSION: This study showed that HJP acted on ED through multi-components, multi-targets and multi-pathways, which has provided some evidence and reference for the clinical treatment and subsequent studies of the disease.
Assuntos
Medicamentos de Ervas Chinesas , Disfunção Erétil , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em Rede , Mapas de Interação de Proteínas , Masculino , Disfunção Erétil/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Transdução de SinaisRESUMO
Two undescribed ent-kaurene diterpenes, named guidongnins I (1) and J (2), were isolated from the medicinal plant Isodon rubescens. Compound 1 was determined to contain an unprecedented 23 carbons in the skeleton by bearing an extra isopropyl group at C-17 out of the diterpenoid parent structure, and compound 2 was the first example of 6,7-seco-7,20-olide-ent-kaurenes with two fused-tetrahydrofuran rings formed between C-6 and C-19/C-20 through oxygen bridges. Their structures, including their absolute configurations, were determined using the analyses of the spectroscopic and X-ray diffraction data. Guidongnins I (1) and J (2) were assessed for their anti-cancer activities against the growth of various cancer cell lines, and 2 displayed cytotoxic potency against HepG2 at IC50 27.14 ± 3.43 µM.
Assuntos
Diterpenos do Tipo Caurano , Diterpenos , Isodon , Diterpenos do Tipo Caurano/farmacologia , Diterpenos/farmacologia , Carbono , Linhagem CelularRESUMO
BACKGROUND: The use of slow release fertilizers (SRFs) is an effective approach for reducing agriculture cost, environmental and ecological issues simultaneously. The present study provides a series of poly(vinyl alcohol) (PVA)/sodium alginate (SA) polymer membranes as eco-friendly and biodegradable coatings for SRFs. Moreover, polymer-coated urea (PCU) granules were fabricated through coating the urea granules with the resulting membranes. Our first interest was to fabricate three membranes (PS1, PS2, PS3) of different PVA/SA weight ratios (9:1, 8:2, 7:3) using glutaraldehyde as a crosslinking agent, and crosslink the PS3 membrane with a CaCl2 solution further to obtain the PC3 membrane. The chemical properties and morphologies of the membranes were characterized. Second, the nitrogen release behavior of the PCU granules was measured and calculated, respectively. RESULTS: Crosslinking with glutaraldehyde made the PS1, PS2, PS3 membranes uniform and compact, whereas crosslinking with a CaCl2 solution formed an 'egg box' structure inside the PC3 membrane. PS3 membrane with the minimum PVA/SA weight ratio had the highest hydrophily (water uptake: 106.25%, water contact angle: 55.1o ), whereas PC3 membrane had the lowest hydrophily (water uptake: 21.57%, water contact angle: 67.3o ). The biodegradation ratios of the membranes were in the range 44-60% in 90 days, indicating that they had excellent biodegradability. The measured fractional release on the day 30 of the PCU granules ranged from 89.33% to 97.07%. The calculated nitrogen release behavior agreed well with the measured values. CONCLUSION: The resulting eco-friendly and biodegradable PVA/SA membranes are alternative coatings for SRFs. © 2022 Society of Chemical Industry.
Assuntos
Polímeros , Álcool de Polivinil , Polímeros/química , Álcool de Polivinil/química , Alginatos/química , Fertilizantes/análise , Glutaral , Cloreto de Cálcio , Água/química , UreiaRESUMO
OBJECTIVE: To explor the potential mechanisms of ferroptosis involvement in non-obstructive azoospermia based on bioinformatics and machine learning methods. METHODS: To obtain disease-related datasets and ferroptosis-related genes, we utilized the GEO database and FerrDb database, respectively. Using the R software, the disease dataset was subjected to normalization, differential analysis, and GO and KEGG enrichment analysis. The differentially expressed genes from the disease dataset were then intersected with the ferroptosis-related genes to identify common genes. Core genes were selected using three machine learning algorithms, namely LASSO, SVM-RFE, and random forest. Further analysis included exploring immune infiltration correlation, predicting target drugs, and conducting molecular docking simulations. RESULTS: The differential analysis of the GSE45885 dataset yielded 1751 differentially expressed genes, while the GSE145467 dataset yielded 4358 differentially expressed genes. The intersection of these two gene sets resulted in a disease-related gene set consisting of 508 genes. Taking the intersection of the disease-related gene set and the ferroptosis-related gene set, we obtained 17 disease-related ferroptosis genes. After machine learning-based screening, three core genes were identified: GPX4, HSF1, and KLHDC3. CONCLUSION: The mechanism underlying the involvement of ferroptosis in non-obstructive azoospermia may be linked to the downregulation of GPX4, HSF1, and KLHDC3 expression. This finding provides a basis for subsequent in-depth mechanistic and therapeutic studies.
Assuntos
Azoospermia , Ferroptose , Masculino , Humanos , Azoospermia/genética , Ferroptose/genética , Simulação de Acoplamento Molecular , Biologia Computacional , Aprendizado de MáquinaRESUMO
Cellulose nanocrystals (CNCs)-derived photonic materials have confirmed great potential in producing renewable optical and engineering areas. However, it remains challenging to simultaneously possess toughness, strength, and multiple responses for developing high-performance sensors, intelligent coatings, flexible textiles, and multifunctional devices. Herein, the authors report a facile and robust strategy that poly(ethylene glycol) dimethacrylate (PEGDMA) can be converged into the chiral nematic structure of CNCs by ultraviolet-triggered free radical polymerization in an N,N-dimethylformamide solvent system. The resulting CNC-poly(PEGDMA) composite exhibits impressive strength (42 MPa), stretchability (104%), toughness (31 MJ m-3 ), and solvent resistance. Notably, it preserves vivid optical iridescence, displaying stretchable variation from red, yellow, to green responding to the applied mechanical stimuli. More interestingly, upon exposure to spraying moisture, it executes sensitive actuation (4.6° s-1 ) and multiple complex 3D deformation behaviors, accompanied by synergistic iridescent appearances. Due to its structural anisotropy of CNC with typical left-handedness, the actuation shows the capability to generate a high probability (63%) of right-handed helical shapes, mimicking a coiled tendril. The authors envision that this versatile system with sustainability, robustness, mechanochromism, and specific actuating ability will open a sustainable avenue in mechanical sensors, stretchable optics, intelligent actuators, and soft robots.
Assuntos
Celulose , Nanopartículas , Celulose/química , Nanopartículas/química , Óptica e Fotônica , Fótons , SolventesRESUMO
Coalescence-induced drop jumping has received significant attention in the past decade. However, its application remains challenging as a result of the low energy conversion efficiency and uncontrollable drop jumping direction. In this work, we report the high-efficiency coalescence-induced drop jumping with tunable jumping direction via rationally designed millimeter-sized circular grooves. By increasing the surface-droplet impact site area and restricting the oscillatory deformation, the energy conversion efficiency of the jumping droplet reaches 43.5%, 600% as high as the conventional superhydrophobic surfaces. The droplet jumping direction can be tuned from 90° to 60° by varying the principal curvature of the circular groove, while the energy conversion efficiency remains unchanged. We show through theoretical analysis and numerical simulations that the directional jumping mainly originates from reallocation of droplet momentum enabled by the asymmetric liquid bridge impact. Our study demonstrates a simple yet effective method for fast, efficient, and directional droplet removal, which warrants promising applications in jumping droplet condensation, water harvesting, anti-icing, and self-cleaning.
RESUMO
In order to discover more promising antifungal and antibacterial agents, a series of new derivatives were designed and synthesized by structure modification based on the naturally occurring antimicrobial compound lophanic acid. The structures of all the target compounds were well characterized by spectroscopic data. The stereochemistry of these compounds was further determined through the X-ray diffraction analysis of 6a. The synthetic compounds were evaluated for their antimicrobial activities against filamentous fungi (T. rubrum, T. mentagrophytes), yeasts (C. neoformans, C. albicans) and Gram-positive and Gram-negative bacteria (MRSA, S. mutans, S. sobrinus, and E. coli). Among them, 3d and 3i are found as the most promising leads that showed potent inhibitory effects against all the tested fungal and bacterial strains except for E. coli. The presence of the C-20 carboxylic ester groups and the free hydroxy group at C-13 was found to be essential for the antifungal and antibacterial activities of the lophanic acid derivatives.
Assuntos
Anti-Infecciosos , Antifúngicos , Antifúngicos/química , Antibacterianos/química , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Bactérias Gram-Positivas , Escherichia coli , Relação Estrutura-Atividade , Fungos , Candida albicans , Anti-Infecciosos/farmacologia , Ésteres/farmacologia , Estrutura MolecularRESUMO
Three isopimarane diterpenes [fladins B (1), C (2), and D (3)] were isolated from the twigs and leaves of Chinese folk medicine, Isodon flavidus. The chemical structures were determined by the analysis of the comprehensive spectroscopic data, and the absolute configuration was confirmed by X-ray crystallographic analysis. The structures of 1-3 were formed from isopimaranes through the rearrangement of ring A by the bond break at C-3 and C-4 to form a new δ-lactone ring system between C-3 and C-9. This structure type represents the first discovery of a natural isopimarane diterpene with an unusual lactone moiety at C-9 and C-10. In the crystal of 1, molecules are linked to each other by intermolecular O-H···O bonds, forming chains along the b axis. Compounds 1-3 were evaluated for their bioactivities against different diseases. None of these compounds displayed cytotoxic activities against HCT116 and A549 cancer cell lines, antifungal activities against Trichophyton rubrum and T. mentagrophytes, or antiviral activities against HIV entry at 20 µg/mL (62.9-66.7) µM. Compounds 1 and 3 did not show antiviral activities against Ebola entry at 20 µg/mL either; only 2 was found to show an 81% inhibitory effect against Ebola entry activity at 20 µg/mL (66.7 µM). The bioactivity evidence suggested that this type of compound could be a valuable antiviral lead for further structure modification to improve the antiviral potential.
Assuntos
Diterpenos , Doença pelo Vírus Ebola , Isodon , Abietanos/análise , Abietanos/farmacologia , Antivirais/análise , Diterpenos/química , Isodon/química , Lactonas/análise , Folhas de Planta/químicaRESUMO
Accurate diagnosis and targeted therapy are essential to precision theranostics. However, nonspecific response of theranostic agents in healthy tissues impedes their practical applications. Here, we design an activatable DNA nanosphere for specifically in situ sensing of cancer biomarker flap endonuclease 1 (FEN1) and spatiotemporally modulating drug release. The gold nanostar-conjugated FEN1 substrate acts as spherical nucleic acid and induces a fluorescence signal upon a FEN1 stimulus for diagnosis. Guided by the nanoflare, external NIR light then triggers a controlled release of carried drugs at desired sites. This DNA nanosphere not only exhibits good stability, sensitivity, and specificity toward FEN1 assay but also serves as a precision theranostic agent for targeted and controlled drug delivery. Our study provides a reliable method for FEN1 imaging in vitro and in vivo and suggests a powerful strategy for precision medicine.
Assuntos
Neoplasias , Ácidos Nucleicos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Endonucleases Flap , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológicoRESUMO
While the drop impact dynamics on stationary surfaces has been widely studied, the way a drop impacts a moving solid is by far less known. Here, we report the physical mechanisms of water drops impacting on superhydrophobic surfaces with horizontal motions. We find that a viscous force is created due to the entrainment of a thin air layer between the liquid and solid interfaces, which competes with the capillary and inertia forces, leading to an asymmetric elongation of the drop and an unexpected contact time reduction. Our experimental and theoretical results uncover consolidated scaling relations: the maximum spreading diameter is controlled by both the Weber and capillary numbers D_{max}/D_{0}â¼We^{1/4}Ca^{1/6}, while the dimensionless contact time depends on the capillary number τ/τ_{0}â¼Ca^{-1/6}. These findings strengthen our fundamental understandings of interactions between drops and moving solids and open up new opportunities for controlling the preferred water repellency through largely unexplored active approaches.
RESUMO
In the first part of this research, we reported the experimental study of the drop impact on the superhydrophobic circular groove arrays, which resulted in a directional droplet transport. In the second part, we further explored the influence of the Weber number (We), ridge height (H), and the deviation distance (r) between the impacting point and the center of curvature on the lateral offset distance (ΔL) of bouncing drops. The suggested theoretical analysis is in reasonable agreement with the experimental observations. We demonstrate that a Cassie-Wenzel wetting transition occurred within the microstructures of the relief under the threshold Weber number, for example, We â 19-25, which switched the nature of drop bouncing. The dynamic pressure plays a decisive role in the directional droplet transport. The reported investigation may shed light on the solid-liquid interactions occurring on the patterned hierarchical surfaces and open up new opportunities for directional droplet transportation.
RESUMO
Abnormal activation of the PI3K/Akt pathway is demonstrated in most of human malignant tumors via regulation of proliferation, cell cycle, and apoptosis. Therefore, drug discovery and development of targeting the PI3K/Akt pathway has attracted great interest of researchers in the development of anticancer drugs. In this study, fifteen 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives were designed and synthesized. Anticancer activities of the synthetic compounds were evaluated and the potential mechanisms were explored. Several compounds showed certain proliferation inhibitory activity against the tested cancer cells including human non-small cell lung cancer (NSCLC) HCC827, human neuroblastoma SH-SY5Y and hepatocellular carcinoma LM3 cells. Among them, compound 7i and 7m showed the best inhibitory activity against all the cancer cell lines and more active against HCC827 cells with IC50 values of 1.12 µM and 1.20 µM, respectively. In addition, 7i and 7m showed lower inhibitory activity against H7702 cells (human normal liver cells) with IC50 values of 8.66 µM and 10.89 µM, respectively, nearly 8-fold lower than that in HCC827 cells. These results suggested that compounds 7i and 7m had certain selectivity to tumor cells, compared to human normal cells. Further biological studies indicated 7i induced G2/M phase arrests and cell apoptosis of HCC827 cells via PI3K/Akt and caspase dependent pathway. Together, these novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives such as compound 7i and 7m might be lead compounds for development of potential anti-cancer drugs.
Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Quinazolinonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Inibidores de Fosfoinositídeo-3 Quinase/química , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-AtividadeRESUMO
PURPOSE: Irritable bowel syndrome (IBS) is a functional bowel disorder. This study aimed to assess the effect of a probiotic product (containing Lactobacillus casei Zhang, Lactobacillus plantarum P-8, and Bifdobacterium animalis subsp. lactis V9) as an adjunct to a routine regimen in IBS management. METHODS: Forty-five patients with IBS were randomized into the probiotic (n = 24) and control (n = 21) groups, receiving the routine regimen with or without probiotics for 28 days, respectively. Serum and fecal samples were collected and analyzed. RESULTS: The IBS-symptom severity score (P < 0.01), serum levels of IL-6 (P < 0.01) and TNF-α (P < 0.001) were significantly lower in the probiotic group than the control group at day 28. The probiotic adjunctive treatment resulted in significant decreases in some bacterial genera that worsen IBS, such as Bacteroides (P < 0.01), Escherichia (P < 0.05), and Citrobacter (P < 0.05), significant decreases were also observed in some beneficial genera in the control group, including Bifidobacterium (P < 0.05), Eubacterium (P < 0.05), Dorea (P < 0.01), and Butyricicoccus (P < 0.05). Furthermore, significant correlations were found between some monitored parameters and compositional changes in the fecal microbiota, suggesting that the clinical improvement of IBS was likely associated with gut microbiota modulation. The enterotype analysis revealed that the initial fecal microbiota composition could influence clinical outcomes. CONCLUSIONS: The adjunctive use of probiotics with a routine regimen showed additional clinical effectiveness compared to the routine regimen alone in managing IBS. A pretreatment gut microbiome analysis might help tailor a personalized probiotic regimen to optimize treatment effects.
Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Probióticos , Bifidobacterium , Humanos , Inflamação , Síndrome do Intestino Irritável/terapia , Resultado do TratamentoRESUMO
Nanomaterials are commonly utilized for amplified immunoassay of biomarkers. However, traditional nanomaterial-based immunoassay usually requires a time-consuming and labor-intensive nanoparticle modification and conjugation process, which impedes their practical applications. Here, a new immunoassay method based on biosynthesized nanomaterials is developed with versatile functions for facile and ultrasensitive detection of cancer biomarker. In this method, the utilized biosynthesized quantum dots (BQDs) allow convenient antibody conjugation and electrode modification, and demonstrate excellent electrochemical and electrochemiluminescent responses. The differential pulse voltammetric, faradaic impedance spectroscopy, and electrochemiluminescent measurements with the BQD-modified electrode show detection limits at picomolar levels as well as good specificity toward human prostate-specific antigen detection. The inherent recognization capability as well as the inherent electrochemical and electrochemiluminescence features thus enable BQDs as good candidates for facile immunosensors with high sensitivity. Such a biosynthesized nanomaterial-based approach opens up the possibility of using innovative designs for nanoparticle-based assays, and developing reliable and practical methods for early disease diagnosis.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Imunoensaio , Medições Luminescentes , Antígeno Prostático Específico/análise , Pontos Quânticos/química , Humanos , Pontos Quânticos/metabolismoRESUMO
Directional transport of liquid droplets is crucial for various applications including water harvesting, anti-icing, and condensation heat transfer. Here, bouncing of water droplets with patterned superhydrophobic surfaces composed of circular equidistant grooves was studied. The directional transport of droplets toward the pole of the grooves was observed. The impact of the Weber number, initial polar distance r, and geometrical parameters of the surface on the directional droplet bouncing was experimentally explored. The nature of bouncing was switched when the Weber numbers exceeded We â 20-25. The rebouncing height was slightly dependent on the initial polar coordinate of the impact point for a fixed We, whereas it grew for We > 20. The weak dependence of the droplet spreading time on the Weber number was close to the dependence predicted by the Hertz bouncing, thus evidencing the negligible influence of viscosity in the process. Change in the scaling exponent describing the dependence of the normalized spreading time on the Weber number was registered for We â 25. The universal dependence of the offset distance ΔL of the droplets on the Weber number ΔL/D0 â¼ We1.5 was established. The normalized offset distance decreased with the normalized initial polar distance as ΔL/D0 â¼ (r/S)-1, where D0 and S are the droplet diameter and groove width, respectively. This research may yield more insights into droplet bouncing on patterned surfaces and offer more options in directed droplet transportation.
RESUMO
Bouncing of water droplets on the post-built superhydrophobic surfaces was studied. The topography of the surfaces was constituted by PDMS conical posts decorated with ZnO nanoparticles. Droplet impact on surface topographies built of posts with varied configuration and separation was studied under different Weber numbers. Faceted spreading and retraction of droplets were observed. Square-, pentagon-, and hexagon-shaped droplets were registered. It was shown that the nature of droplet spreading depended on both the Weber number and the topography of the post arrays. Even bouncing under small Weber numbers We â 6.5 resulted in the Cassie-Wenzel transitions, starting from the area adjacent to the axis of droplets, and the area exposed to the wetting transitions scaled as [Formula: see text]. During spreading, two main stages were recorded as the kinematic (inertial) stage and the viscous stage. The viscous stage, in turn, appeared as a consequence of two substages governed by various time scaling laws. The faceted triple line was observed for the Cassie-like retraction of droplets.
RESUMO
Hyperglycemia mediates oxidative stress, thus inducing transcription factor nuclear factor kappa B (NF-κB) activation, increasing endothelial adhesion molecule expression and monocyte/endothelial interaction, and resulting in endothelial injury. Ketamine was reported to attenuate oxidative stress in many cases. In this research, we determined whether and how ketamine protects against high-glucose-mediated augmentation of monocyte/endothelial interaction and endothelial adhesion molecule expression in human umbilical vein endothelial cells. High glucose augmented monocyte/endothelial adhesion and endothelial adhesion molecule expression. High glucose induced reactive oxygen species (ROS) production and augmented phospho-protein kinase C (p-PKC) ßII expression and PKC activity. Moreover, high glucose inhibited the inhibitory subunit of nuclear factor-κBα (IκBα) expression in the cytoplasm and induced NF-κB nuclear translocation. Importantly, the effects induced by high glucose were counteracted by ketamine treatment. Further, CGP53353, a PKC ßII inhibitor, inhibited high-glucose-mediated NF-κB nuclear translocation, attenuated adhesion molecule expression, and reduced monocyte/endothelial interaction. Further, these effects of ketamine against high-glucose-induced endothelial injury were inhibited by phorbol 12-myristate 13-acetate, a PKC ßII activator. In conclusion, ketamine, via reducing ROS accumulation, inhibited PKC ßII Ser660 phosphorylation and PKC and NF-κB activation and reduced high-glucose-induced expression of endothelial adhesion molecules and monocyte/endothelial interaction.
Assuntos
Glucose/efeitos adversos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/tratamento farmacológico , Ketamina/farmacologia , Analgésicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Edulcorantes/efeitos adversosRESUMO
Aerobic glycolysis plays a crucial role in cancer progression. Ketamine is often used for cancer pain relief in clinical settings. Moreover, ketamine inhibits proliferation and induces apoptosis in many cancer cell types. However, the anti-tumour mechanism of ketamine is still poorly understood. In the present study, we survey whether and how ketamine inhibits aerobic glycolysis in colon cancer cells. Glycolysis of colon cancer cells was determined by detecting the extracellular acidification rate in HT29 and SW480 cells. Quantitative real-time PCR was employed to determine mRNA expression. Calcium levels were detected with a Fluo-3 AM fluorescence kit. Micro-positron emission tomography/computed tomography (microPET/CT) imaging was employed to assess glycolysis in the tumours of the xenograft model. Ketamine treatment inhibited colon cancer cell viability and migration in HT29 and SW480 cells. Moreover, ketamine decreased aerobic glycolysis and decreased the expression of glycolysis-related proteins in HT29 and SW480 cells. MicroPET/CT demonstrated that ketamine decreased 18F-FDG uptake in the xenograft model. In addition, ketamine inhibited c-Myc expression and CaMK II phosphorylation and decreased calcium levels. Further, dizocilpine (an NMDAR inhibitor), and KN93 (a CaMK II inhibitor), decreased CaMK II phosphorylation, c-Myc expression, and cancer cell glycolysis; these results were similar to those with ketamine treatment. Furthermore, the anti-tumour effect of ketamine was counteracted by rapastinel (an NMDAR activator). Ketamine inhibited aerobic glycolysis in colon cancer cells probably by blocking the NMDA receptor-CaMK II-c-Myc pathway, thus attenuating colon cancer cell viability and migration.
Assuntos
Antineoplásicos/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicólise/efeitos dos fármacos , Ketamina/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Camundongos Endogâmicos BALB C , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Ion-exchange membranes are the core elements for an electrodialysis (ED) separation process. Phase inversion is an effective method, particularly for commercial membrane production. It introduces two different mechanisms, i.e., thermal induced phase separation (TIPS) and diffusion induced phase separation (DIPS). In this study, anion exchange membranes (AEMs) were prepared by grafting a quaternized moiety (QM,2-[dimethylaminomethyl]naphthalen-1-ol) through brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO) via the TIPS method. Those membranes were applied for selective bisulfite (HSO3-) anion separation using ED. The membrane surface morphology was characterized by SEM, and the compositions were magnified using a high-resolution transmission electron microscope (HRTEM). Notably, the membranes showed excellent substance stability in an alkali medium and in grafting tests performed in a QM-soluble solvent. The ED experiment indicated that the as-prepared membrane exhibited better HSO3- separation performance than the state-of-the-art commercial Neosepta AMX (ASTOM, Japan) membrane.