Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Genome Res ; 33(10): 1690-1707, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37884341

RESUMO

The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.


Assuntos
Metagenoma , Microbiota , Ovinos/genética , Animais , Transcriptoma , Rúmen , Ruminantes/genética
2.
Proc Natl Acad Sci U S A ; 120(8): e2210643120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36795751

RESUMO

Microglia play a critical role in the pathogenic process of neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). Upon pathological stimulation, microglia are converted from a surveillant to an overactivated phenotype. However, the molecular characters of proliferating microglia and their contributions to the pathogenesis of neurodegeneration remain unclear. Here, we identify chondroitin sulfate proteoglycan 4 (Cspg4, also known as neural/glial antigen 2)-expressing microglia as a specific subset of microglia with proliferative capability during neurodegeneration. We found that the percentage of Cspg4+ microglia was increased in mouse models of PD. The transcriptomic analysis of Cspg4+ microglia revealed that the subcluster Cspg4high microglia displayed a unique transcriptomic signature, which was characterized by the enrichment of orthologous cell cycle genes and a lower expression of genes responsible for neuroinflammation and phagocytosis. Their gene signatures were also distinct from that of known disease-associated microglia. The proliferation of quiescent Cspg4high microglia was evoked by pathological α-synuclein. Following the transplantation in the adult brain with the depletion of endogenous microglia, Cspg4high microglia grafts showed higher survival rates than their Cspg4- counterparts. Consistently, Cspg4high microglia were detected in the brain of AD patients and displayed the expansion in animal models of AD. These findings suggest that Cspg4high microglia are one of the origins of microgliosis during neurodegeneration and may open up a avenue for the treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Microglia/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Fagocitose
3.
Nature ; 571(7764): 275-278, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181567

RESUMO

Recently developed DNA base editing methods enable the direct generation of desired point mutations in genomic DNA without generating any double-strand breaks1-3, but the issue of off-target edits has limited the application of these methods. Although several previous studies have evaluated off-target mutations in genomic DNA4-8, it is now clear that the deaminases that are integral to commonly used DNA base editors often bind to RNA9-13. For example, the cytosine deaminase APOBEC1-which is used in cytosine base editors (CBEs)-targets both DNA and RNA12, and the adenine deaminase TadA-which is used in adenine base editors (ABEs)-induces site-specific inosine formation on RNA9,11. However, any potential RNA mutations caused by DNA base editors have not been evaluated. Adeno-associated viruses are the most common delivery system for gene therapies that involve DNA editing; these viruses can sustain long-term gene expression in vivo, so the extent of potential RNA mutations induced by DNA base editors is of great concern14-16. Here we quantitatively evaluated RNA single nucleotide variations (SNVs) that were induced by CBEs or ABEs. Both the cytosine base editor BE3 and the adenine base editor ABE7.10 generated tens of thousands of off-target RNA SNVs. Subsequently, by engineering deaminases, we found that three CBE variants and one ABE variant showed a reduction in off-target RNA SNVs to the baseline while maintaining efficient DNA on-target activity. This study reveals a previously overlooked aspect of off-target effects in DNA editing and also demonstrates that such effects can be eliminated by engineering deaminases.


Assuntos
DNA/genética , Edição de Genes/métodos , Mutagênese , Mutação , Nucleosídeo Desaminases/genética , Engenharia de Proteínas , RNA/genética , Adenina/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Citosina/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Células HEK293 , Humanos , Nucleosídeo Desaminases/metabolismo , Especificidade por Substrato , Transfecção
4.
J Biol Chem ; 299(6): 104786, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37146968

RESUMO

The E3 ubiquitin ligase APC/C-Cdh1 maintains the G0/G1 state, and its inactivation is required for cell cycle entry. We reveal a novel role for Fas-associated protein with death domain (FADD) in the cell cycle through its function as an inhibitor of APC/C-Cdh1. Using real-time, single-cell imaging of live cells combined with biochemical analysis, we demonstrate that APC/C-Cdh1 hyperactivity in FADD-deficient cells leads to a G1 arrest despite persistent mitogenic signaling through oncogenic EGFR/KRAS. We further show that FADDWT interacts with Cdh1, while a mutant lacking a consensus KEN-box motif (FADDKEN) fails to interact with Cdh1 and results in a G1 arrest due to its inability to inhibit APC/C-Cdh1. Additionally, enhanced expression of FADDWT but not FADDKEN, in cells arrested in G1 upon CDK4/6 inhibition, leads to APC/C-Cdh1 inactivation and entry into the cell cycle in the absence of retinoblastoma protein phosphorylation. FADD's function in the cell cycle requires its phosphorylation by CK1α at Ser-194 which promotes its nuclear translocation. Overall, FADD provides a CDK4/6-Rb-E2F-independent "bypass" mechanism for cell cycle entry and thus a therapeutic opportunity for CDK4/6 inhibitor resistance.


Assuntos
Proteínas de Ciclo Celular , Ubiquitina-Proteína Ligases , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Expressão Gênica , Células HEK293 , Mutação , Domínios Proteicos , Transporte Proteico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Eur J Neurosci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992988

RESUMO

The involvement of inwardly rectifying potassium channel 4.1 (Kir4.1) in neuropathic pain has been established. However, there is limited understanding of the downstream mechanism through which Kir4.1 contributes to orofacial neuropathic pain. The objective of this study was to examine the regulation of Kir4.1 on the expression of pannexin 3 (Panx3) in the trigeminal ganglion (TG) and the underlying mechanism in the context of orofacial neuropathic pain caused by chronic constriction injury of the infraorbital nerve (CCI-ION). The study observed a significant increase in Panx3 expression in the TG of mice with CCI-ION. Inhibition of Panx3 in the TG of CCI-ION mice resulted in alleviation of orofacial mechanical allodynia. Furthermore, conditional knockdown (CKD) of Kir4.1 in the TG of both male and female mice led to mechanical allodynia and upregulation of Panx3 expression. Conversely, overexpression of Kir4.1 decreased Panx3 levels in the TG and relieved mechanical allodynia in CCI-ION mice. In addition, silencing Kir4.1 in satellite glial cells (SGCs) decreased Panx3 expression and increased the phosphorylation of P38 MAPK. Moreover, silencing Kir4.1 in SGCs increased the levels of reactive oxygen species (ROS). The elevated phosphorylation of P38 MAPK resulting from Kir4.1 silencing was inhibited by using a superoxide scavenger known as the tempol. Silencing Panx3 in the TG in vivo attenuated the mechanical allodynia caused by Kir4.1 CKD. In conclusion, these findings suggest that the reduction of Kir4.1 promotes the expression of Panx3 by activating the ROS-P38 MAPK signalling pathway, thus contributing to the development of orofacial neuropathic pain.

6.
EMBO J ; 39(22): e104748, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33058207

RESUMO

Programmable A > I RNA editing is a valuable tool for basic research and medicine. A variety of editors have been created, but a genetically encoded editor that is both precise and efficient has not been described to date. The trade-off between precision and efficiency is exemplified in the state of the art editor REPAIR, which comprises the ADAR2 deaminase domain fused to dCas13b. REPAIR is highly efficient, but also causes significant off-target effects. Mutations that weaken the deaminase domain can minimize the undesirable effects, but this comes at the expense of on-target editing efficiency. We have now overcome this dilemma by using a multipronged approach: We have chosen an alternative Cas protein (CasRx), inserted the deaminase domain into the middle of CasRx, and redirected the editor to the nucleus. The new editor created, dubbed REPAIRx, is precise yet highly efficient, outperforming various previous versions on both mRNA and nuclear RNA targets. Thus, REPAIRx markedly expands the RNA editing toolkit and illustrates a novel strategy for base editor optimization.


Assuntos
Edição de Genes/métodos , Edição de RNA , RNA/metabolismo , Adenosina Desaminase/genética , Células HEK293 , Humanos , Mutação , Proteínas de Ligação a RNA/genética , Transcriptoma
7.
Biochem Biophys Res Commun ; 709: 149818, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38555840

RESUMO

Oncoprotein SE translocation (SET) is frequently overexpressed in different types of tumors and correlated with poor prognosis of cancer patients. Targeting SET has been considered a promising strategy for cancer intervention. However, the mechanisms by which SET is regulated under cellular conditions are largely unknown. Here, by performing a tandem affinity purification-mass spectrometry (TAP-MS), we identify that the ubiquitin-specific protease 7 (USP7) forms a stable protein complex with SET in cancer cells. Further analyses reveal that the acidic domain of SET directly binds USP7 while both catalytic domain and ubiquitin-like (UBL) domains of USP7 are required for SET binding. Knockdown of USP7 has no effect on the mRNA level of SET. However, we surprisingly find that USP7 depletion leads to a dramatic elevation of SET protein levels, suggesting that USP7 plays a key role in destabilizing oncoprotein SET, possibly through an indirect mechanism. To our knowledge, our data report the first deubiquitinase (DUB) that physically associates with oncoprotein SET and imply an unexpected regulatory effect of USP7 on SET stability.


Assuntos
Proteínas Oncogênicas , Peptidase 7 Específica de Ubiquitina , Humanos , Domínio Catalítico , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/genética
8.
New Phytol ; 243(3): 997-1016, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849319

RESUMO

Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Giberelinas , Malus , Oxilipinas , Proteínas de Plantas , Transdução de Sinais , Ubiquitinação , Oxilipinas/metabolismo , Malus/genética , Malus/metabolismo , Ciclopentanos/metabolismo , Ubiquitinação/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Giberelinas/metabolismo , Proteólise/efeitos dos fármacos , Antocianinas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Modelos Biológicos
9.
Mol Pharm ; 21(6): 2659-2672, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38695194

RESUMO

Regulatory T cells (Tregs), a subset of CD4+ T cells, are indispensable in maintaining immune self-tolerance and have been utilized in various diseases. Treg-derived extracellular vesicles (Treg-EVs) have been discovered to play an important role in the mechanism of Treg functions. As cell-derived membranous particles, EVs carry multiple bioactive substances that possess tremendous potential for theranostics. Treg-EVs are involved in numerous physiological and pathological processes, carrying proteins and miRNAs inherited from the parental cells. To comprehensively understand the function of Treg-EVs, here we reviewed the classification of Treg-EVs, the active molecules in Treg-EVs, their various applications in diseases, and the existing challenges for Treg-EVs based theranostics. This Review aims to clarify the feasibility and potential of Treg-EVs in diseases and theranostics, facilitating further research and application of Treg-EVs.


Assuntos
Vesículas Extracelulares , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Humanos , Animais , Nanomedicina Teranóstica/métodos , MicroRNAs/genética , Medicina de Precisão/métodos
10.
Mol Pharm ; 21(5): 2606-2621, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38606716

RESUMO

Compounds 8a-j were designed to adjust the mode of interaction and lipophilicity of FTT by scaffold hopping and changing the length of the alkoxy groups. Compounds 8a, 8d, 8g, and BIBD-300 were screened for high-affinity PARP-1 through enzyme inhibition assays and are worthy of further evaluation. PET imaging of MCF-7 subcutaneous tumors with moderate expression of PARP-1 showed that compared to [18F]FTT, [18F]8a, [18F]8d, and [18F]8g exhibited greater nonspecific uptake, a lower target-to-nontarget ratio, and severe defluorination, while [18F]BIBD-300 exhibited lower nonspecific uptake and a greater target-to-nontarget ratio. PET imaging of 22Rv1 subcutaneous tumors, which highly express PARP-1, confirmed that the uptake of [18F]BIBD-300 in normal organs, such as the liver, muscle, and bone, was lower than that of [18F]FTT, and the ratio of tumor-to-muscle and tumor-to-liver [18F]BIBD-300 was greater than that of [18F]FTT. The biodistribution results in mice with MCF-7 and 22Rv1 subcutaneous tumors further validated the results of PET imaging. Unlike [18F]FTT, which mainly relies on hepatobiliary clearance, [18F]BIBD-300, which has lower lipophilicity, undergoes a partial shift from hepatobiliary to renal clearance, providing the possibility for [18F]BIBD-300 to indicate liver cancer. The difference in the PET imaging results for [18F]FTT, [18F]BIBD-300, and [18F]8j in 22Rv1 mice and the corresponding molecular docking results further confirmed that subtle structural modifications in lipophilicity greatly optimize the properties of the tracer. Cell uptake experiments also demonstrated that [18F]BIBD-300 has a high affinity for PARP-1. Metabolized and unmetabolized [18F]FTT and [18F]BIBD-300 were detected in the brain, indicating that they could not accurately quantify the amount of PARP-1 in the brain. However, PET imaging of glioma showed that both [18F]FTT and [18F]BIBD-300 could accurately localize both in situ to C6 and U87MG tumors. Based on its potential advantages in the diagnosis of breast cancer, prostate cancer, and glioma, as well as liver cancer, [18F]BIBD-300 is a new option for an excellent PARP-1 tracer.


Assuntos
Radioisótopos de Flúor , Poli(ADP-Ribose) Polimerase-1 , Tomografia por Emissão de Pósitrons , Animais , Humanos , Tomografia por Emissão de Pósitrons/métodos , Camundongos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Feminino , Distribuição Tecidual , Compostos Radiofarmacêuticos/farmacocinética , Linhagem Celular Tumoral , Camundongos Nus , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Desenho de Fármacos , Camundongos Endogâmicos BALB C , Células MCF-7
11.
Bioorg Chem ; 143: 107010, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056387

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and deficits in cognitive domains. Low choline levels, oxidative stress, and neuroinflammation are the primary mechanisms implicated in AD progression. Simultaneous inhibition of acetylcholinesterase (AChE) and reactive oxygen species (ROS) production by a single molecule may provide a new breath of hope for AD treatment. Here, we describe donepezil-tacrine hybrids as inhibitors of AChE and ROS. Four series of derivatives with a ß-amino alcohol linker were designed and synthesized. In this study, the target compounds were evaluated for their ability to inhibit AChE and butyrylcholinesterase (BuChE) in vitro, using tacrine (hAChE, IC50 = 305.78 nM; hBuChE, IC50 = 56.72 nM) and donepezil (hAChE, IC50 = 89.32 nM; hBuChE, IC50 = 9137.16 nM) as positive controls. Compound B19 exhibited an excellent and balanced inhibitory potency against AChE (IC50 = 30.68 nM) and BuChE (IC50 = 124.57 nM). The cytotoxicity assays demonstrated that the PC12 cell viability rates of compound B19 (84.37 %) were close to that of tacrine (87.73 %) and donepezil (79.71 %). Potential therapeutic effects in AD were evaluated using the neuroprotective effect of compounds against H2O2-induced toxicity, and compound B19 (68.77 %) exhibited substantially neuroprotective activity at the concentration of 25 µM, compared with the model group (30.34 %). Furthermore, compound B19 protected PC12 cells from H2O2-induced apoptosis and ROS production. These properties of compound B19 suggested that it was a multi-functional agent with AChE inhibition, anti-oxidative, anti-inflammatory activities, and low toxicity and that it deserves further investigation as a promising agent for AD treatment.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Ratos , Tacrina/farmacologia , Tacrina/uso terapêutico , Donepezila/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
12.
Nature ; 563(7730): 249-253, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30401835

RESUMO

N6-methyladenosine (m6A), the most prevalent internal RNA modification on mammalian messenger RNAs, regulates the fates and functions of modified transcripts through m6A-specific binding proteins1-5. In the nervous system, m6A is abundant and modulates various neural functions6-11. Whereas m6A marks groups of mRNAs for coordinated degradation in various physiological processes12-15, the relevance of m6A for mRNA translation in vivo remains largely unknown. Here we show that, through its binding protein YTHDF1, m6A promotes protein translation of target transcripts in response to neuronal stimuli in the adult mouse hippocampus, thereby facilitating learning and memory. Mice with genetic deletion of Ythdf1 show learning and memory defects as well as impaired hippocampal synaptic transmission and long-term potentiation. Re-expression of YTHDF1 in the hippocampus of adult Ythdf1-knockout mice rescues the behavioural and synaptic defects, whereas hippocampus-specific acute knockdown of Ythdf1 or Mettl3, which encodes the catalytic component of the m6A methyltransferase complex, recapitulates the hippocampal deficiency. Transcriptome-wide mapping of YTHDF1-binding sites and m6A sites on hippocampal mRNAs identified key neuronal genes. Nascent protein labelling and tether reporter assays in hippocampal neurons showed that YTHDF1 enhances protein synthesis in a neuronal-stimulus-dependent manner. In summary, YTHDF1 facilitates translation of m6A-methylated neuronal mRNAs in response to neuronal stimulation, and this process contributes to learning and memory.


Assuntos
Adenina/análogos & derivados , Hipocampo/citologia , Hipocampo/fisiologia , Memória/fisiologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenina/metabolismo , Animais , Sítios de Ligação , Feminino , Masculino , Metiltransferases/deficiência , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Aprendizagem Espacial/fisiologia , Transmissão Sináptica
13.
Mol Ther ; 31(7): 2286-2295, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36805082

RESUMO

Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by loss of function mutations in maternally expressed UBE3A. No gene-specific treatment is available for patients so far. Although intact and transcriptionally active, paternally inherited UBE3A is silenced by elongation of antisense long noncoding RNA UBE3A-ATS in neurons. Here, we demonstrated that RNA targeting of paternal Ube3a-ATS with a high-fidelity CRISPR-Cas13 (hfCas13x.1) system could restore Ube3a expression to similar levels as that of maternal Ube3a in the cultured mouse neurons. Furthermore, injection into lateral ventricles with neuron-specific hSyn1 promoter-driven hfCas13x.1 packaged in adeno-associated virus (AAV-PHP.eb) could restore paternal Ube3a expression in cortex and hippocampus of neonatal AS mice for up to 4 months after treatment. Behavioral tests showed that expression of paternal Ube3a significantly alleviated AS-related symptoms, including obesity and motor function. Our results suggested that hfCas13x.1-mediated suppression of the Ube3a-ATS lncRNA potentially serves as a promising targeted intervention for AS.


Assuntos
Síndrome de Angelman , Animais , Camundongos , Síndrome de Angelman/genética , Síndrome de Angelman/terapia , RNA Antissenso/genética , Obesidade , Ubiquitina-Proteína Ligases/genética
14.
BMC Med Imaging ; 24(1): 108, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745134

RESUMO

BACKGROUND: The purpose of this research is to study the sonographic and clinicopathologic characteristics that associate with axillary lymph node metastasis (ALNM) for pure mucinous carcinoma of breast (PMBC). METHODS: A total of 176 patients diagnosed as PMBC after surgery were included. According to the status of axillary lymph nodes, all patients were classified into ALNM group (n = 15) and non-ALNM group (n = 161). The clinical factors (patient age, tumor size, location), molecular biomarkers (ER, PR, HER2 and Ki-67) and sonographic features (shape, orientation, margin, echo pattern, posterior acoustic pattern and vascularity) between two groups were analyzed to unclose the clinicopathologic and ultrasonographic characteristics in PMBC with ALNM. RESULTS: The incidence of axillary lymph node metastasis was 8.5% in this study. Tumors located in the outer side of the breast (upper outer quadrant and lower outer quadrant) were more likely to have lymphatic metastasis, and the difference between the two group was significantly (86.7% vs. 60.3%, P = 0.043). ALNM not associated with age (P = 0.437). Although tumor size not associated with ALNM(P = 0.418), the tumor size in ALNM group (32.3 ± 32.7 mm) was bigger than non-ALNM group (25.2 ± 12.8 mm). All the tumors expressed progesterone receptor (PR) positively, and 90% of all expressed estrogen receptor (ER) positively, human epidermal growth factor receptor 2 (HER2) were positive in two cases of non-ALNM group. Ki-67 high expression was observed in 36 tumors in our study (20.5%), and it was higher in ALNM group than non-ALNM group (33.3% vs. 19.3%), but the difference wasn't significantly (P = 0.338). CONCLUSIONS: Tumor location is a significant factor for ALNM in PMBC. Outer side location is more easily for ALNM. With the bigger size and/or Ki-67 higher expression status, the lymphatic metastasis seems more likely to present.


Assuntos
Adenocarcinoma Mucinoso , Axila , Neoplasias da Mama , Linfonodos , Metástase Linfática , Humanos , Feminino , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Pessoa de Meia-Idade , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Adulto , Idoso , Adenocarcinoma Mucinoso/diagnóstico por imagem , Adenocarcinoma Mucinoso/patologia , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/secundário , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Ultrassonografia/métodos , Biomarcadores Tumorais/metabolismo
15.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 844-856, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606478

RESUMO

Lipid droplets (LDs) are dynamic organelles that store neutral lipids and are closely linked to obesity. Previous studies have suggested that Lycium barbarum polysaccharide (LBP) supplements can ameliorate obesity, but the underlying mechanisms remain unclear. In this study, we hypothesize that LBP alleviates LD accumulation in adipose tissue (AT) by inhibiting fat-specific protein 27 (Fsp27) through an activating transcription factor-6 (ATF6)/small-molecule sirtuin 1 (SIRT1)-dependent mechanism. LD accumulation in AT is induced in high-fat diet (HFD)-fed mice, and differentiation of 3T3-L1 preadipocytes (PAs) is induced. The ability of LBP to alleviate LD accumulation and the possible underlying mechanism are then investigated both in vivo and in vitro. The influences of LBP on the expressions of LD-associated genes ( ATF6 and Fsp27) are also detected. The results show that HFD and PA differentiation markedly increase LD accumulation in ATs and adipocytes, respectively, and these effects are markedly suppressed by LBP supplementation. Furthermore, LBP significantly activates SIRT1 and decreases ATF6 and Fsp27 expressions. Interestingly, the inhibitory effects of LBP are either abolished or exacerbated when ATF6 is overexpressed or silenced, respectively. Furthermore, SIRT1 level is transcriptionally regulated by LBP through opposite actions mediated by ATF6. Collectively, our findings suggest that LBP supplementation alleviates obesity by ameliorating LD accumulation, which might be partially mediated by an ATF6/SIRT1-dependent mechanism.


Assuntos
Células 3T3-L1 , Fator 6 Ativador da Transcrição , Tecido Adiposo , Medicamentos de Ervas Chinesas , Gotículas Lipídicas , Camundongos Endogâmicos C57BL , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Camundongos , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Lycium/química , Diferenciação Celular/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos
16.
Hum Hered ; 88(1): 91-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37899026

RESUMO

INTRODUCTION: Spinocerebellar ataxia (SCA) is an autosomal dominant genetic disease characterized by cerebellar neurological deficits. Specifically, its primary clinical manifestation is ataxia accompanied by peripheral nerve damage. A total of 48 causative genes of SCA have been identified. This study aimed to identify causative genes of autosomal dominant SCA in a four-generation Chinese kindred comprising eight affected individuals. METHODS: Genomic DNA samples were extracted from the pedigree members, and genomic whole-exome sequencing was performed, followed by bidirectional Sanger sequencing, and minigene assays to identify mutation sites. RESULTS: A novel pathogenic heterozygous mutation in the splice region of the coiled-coil domain containing the 88C (CCDC88C) gene (NM_001080414:c.3636-4 A>G) was identified in four affected members. The minigene assay results indicated that this mutation leads to the insertion of CAG bases (c.3636-1_3636-3 insCAG). CONCLUSION: CCDC88C gene mutation leads to SCA40 (OMIM:616053), which is a rare subtype of SCA without symptoms during childhood. Our findings further demonstrated the role of the CCDC88C gene in SCA and indicated that the c.3636-4 A>G (NM_001080414) variant of CCDC88C is causative for a later-onset phenotype of SCA40. Our findings enrich the mutation spectrum of CCDC88C gene and provide a theoretical basis for the genetic counseling of SCA40.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Ataxia/diagnóstico , Ataxia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Linhagem , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/patologia , Degenerações Espinocerebelares/genética
17.
Ecotoxicol Environ Saf ; 271: 115932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232522

RESUMO

BACKGROUND: Endometriosis is a common gynecological disease that affects approximately 5 %∼10 % of reproductive-aged women. Zinc (Zn), selenium (Se), copper (Cu), cobalt (Co) and molybdenum (Mo) are essential trace elements and are very important for human health. However, studies on the relationship between mixtures of essential trace elements and the risk of endometriosis are limited and inconsistent. In particular, studies confirming the association via different sample types are limited. OBJECTIVE: This study aimed to investigate the associations between Zn, Se, Cu, Co and Mo concentrations in blood and follicular fluid (FF) and endometriosis risk in a Chinese population. METHODS: A total of 609 subjects undergoing in vitro fertilization (IVF) were recruited; 836 samples were analyzed, including 451 blood samples (234 controls and 217 cases) and 385 FF samples (203 controls and 182 cases). In addition, 227 subjects provided both blood and FF samples. Zn, Se, Cu, Co and Mo concentrations in blood and FF were quantified via inductively coupled plasma-mass spectrometry (ICP-MS). The associations between the levels of Zn, Se, Cu, Co and Mo and the risk of endometriosis were assessed using single-element models (logistic regression models), and the combined effect of the trace elements on endometriosis risk was assessed using multielement models (Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression). RESULTS: Based on the single-element models, significant associations of Zn concentrations in blood (high-level vs. low-level group: aOR = 14.17, 95 % CI: 7.31, 27.50) and FF (first tertile vs. second tertile group: aOR = 0.34, 95 % CI: 0.16, 0.71; third tertile vs. second tertile group: aOR = 2.32, 95 % CI: 1.38, 3.91, respectively) and Co concentrations in blood (first tertile vs. second tertile group, aOR = 0.24, 95 % CI: 0.12, 0.48) and FF (third tertile vs. second tertile group: aOR = 3.87, 95 % CI: 2.19, 6.84) with endometriosis risk were found after adjustment for all confounders. In FF, Cu and Mo levels were significantly greater among the cases than among the controls, with a positive association with endometriosis risk (Cu (first tertile vs. second tertile group: aOR = 0.39, 95 % CI: 0.19, 0.81; third tertile vs. second tertile group: aOR = 2.73, 95 % CI: 1.61, 4.66, respectively) and Mo (high-level vs. low-level group: aOR = 14.93, 95 % CI: 7.16, 31.12)). However, similar associations between blood Cu and Mo levels and endometriosis risk were not found. In addition, the levels of these five essential trace element mixtures in blood and in FF were significantly and positively associated with endometriosis risk according to the BKMR analyses; the levels of Zn and Cu in blood and the levels of Mo in FF were significantly related to the risk of endometriosis, and the posterior inclusion probabilities (PIPs) were 1.00, 0.99 and 1.00 for Zn and Cu levels in blood and Mo levels in FF, respectively. Furthermore, Zn and Mo were the highest weighted elements in blood and FF, respectively, according to WQS analyses. CONCLUSION: The risk of endometriosis was associated with elevated levels of several essential trace elements (Zn, Cu and Co). Elevated levels of these elements may be involved in the pathomechanism of endometriosis. However, further studies with larger sample sizes will be necessary to confirm these associations.


Assuntos
Endometriose , Selênio , Oligoelementos , Humanos , Feminino , Adulto , Oligoelementos/análise , Zinco , Cobalto , Endometriose/epidemiologia , Teorema de Bayes , Molibdênio
18.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38676130

RESUMO

To enhance the precision of evaluating the operational status of SF6 high-voltage circuit breakers (HVCBs) and devise judicious maintenance strategies, this study introduces an operational state assessment method for SF6 HVCBs grounded in the integrated data-driven analysis (IDDA) model. The relative degradation weight (RDW) is introduced as a metric for quantifying the relative significance of distinct indicators concerning the operational condition of SF6 HVCBs. A data-driven model, founded on critical factor stability (CFS), is formulated to convert environmental indicators into quantitative computations. Furthermore, an optimized fuzzy inference (OFI) system is devised to streamline the system architecture and enhance the processing speed of continuous indicators. Ultimately, the efficacy of the proposed model is substantiated through validation, and results from instance analyses underscore that the presented approach not only attains heightened accuracy in assessment compared to extant analytical methodologies but also furnishes a dependable foundation for prioritizing maintenance sequences across diverse components.

19.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892361

RESUMO

Sophora alopecuroides has important uses in medicine, wind breaking, and sand fixation. The CHY-zinc-finger and RING-finger (CHYR) proteins are crucial for plant growth, development, and environmental adaptation; however, genetic data regarding the CHYR family remain scarce. We aimed to investigate the CHYR gene family in S. alopecuroides and its response to abiotic stress, and identified 18 new SaCHYR genes from S. alopecuroides whole-genome data, categorized into 3 subclasses through a phylogenetic analysis. Gene structure, protein domains, and conserved motifs analyses revealed an exon-intron structure and conserved domain similarities. A chromosome localization analysis showed distribution across 12 chromosomes. A promoter analysis revealed abiotic stress-, light-, and hormone-responsive elements. An RNA-sequencing expression pattern analysis revealed positive responses of SaCHYR genes to salt, alkali, and drought stress. SaCHYR4 overexpression considerably enhanced alkali and drought tolerance in Arabidopsis thaliana. These findings shed light on SaCHYR's function and the resistance mechanisms of S. alopecuroides, presenting new genetic resources for crop resistance breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Sophora , Estresse Fisiológico , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sophora/genética , Arabidopsis/genética , Genoma de Planta , Secas , Cromossomos de Plantas/genética
20.
J Headache Pain ; 25(1): 28, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433184

RESUMO

BACKGROUND: Trigeminal nerve injury is one of the most serious complications in oral clinics, and the subsequent chronic orofacial pain is a consumptive disease. Increasing evidence demonstrates long non-coding RNAs (lncRNAs) play an important role in the pathological process of neuropathic pain. This study aims to explore the function and mechanism of LncRNA Anxa10-203 in the development of orofacial neuropathic pain. METHODS: A mouse model of orofacial neuropathic pain was established by chronic constriction injury of the infraorbital nerve (CCI-ION). The Von Frey test was applied to evaluate hypersensitivity of mice. RT-qPCR and/or Western Blot were performed to analyze the expression of Anxa10-203, DHX30, and MC1R. Cellular localization of target genes was verified by immunofluorescence and RNA fluorescence in situ hybridization. RNA pull-down and RNA immunoprecipitation were used to detect the interaction between the target molecules. Electrophysiology was employed to assess the intrinsic excitability of TG neurons (TGNs) in vitro. RESULTS: Anxa10-203 was upregulated in the TG of CCI-ION mice, and knockdown of Anxa10-203 relieved neuropathic pain. Structurally, Anxa10-203 was located in the cytoplasm of TGNs. Mechanistically, Mc1r expression was positively correlated with Anxa10-203 and was identified as the functional target of Anxa10-203. Besides, Anxa10-203 recruited RNA binding protein DHX30 and formed the Anxa10-203/DHX30 complex to enhance the stability of Mc1r mRNA, resulting in the upregulation of MC1R, which contributed to the enhancement of the intrinsic activity of TGNs in vitro and orofacial neuropathic pain in vivo. CONCLUSIONS: LncRNA Anxa10-203 in the TG played an important role in orofacial neuropathic pain and mediated mechanical allodynia in CCI-ION mice by binding with DHX30 to upregulate MC1R expression.


Assuntos
Neuralgia , RNA Longo não Codificante , Animais , Camundongos , Modelos Animais de Doenças , Hibridização in Situ Fluorescente , RNA Longo não Codificante/genética , Gânglio Trigeminal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa