Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
1.
Hum Mol Genet ; 33(1): 64-77, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756636

RESUMO

GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the first intron of the chromosome 9 open reading frame 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Among the five dipeptide repeat proteins translated from G4C2 HRE, arginine-rich poly-PR (proline:arginine) is extremely toxic. However, the molecular mechanism responsible for poly-PR-induced cell toxicity remains incompletely understood. Here, we found that poly-PR overexpression triggers severe DNA damage in cultured cells, primary cortical neurons, and the motor cortex of a poly-PR transgenic mouse model. Interestingly, we identified a linkage between poly-PR and RNA-binding protein fused in sarcoma (FUS), another ALS-related gene product associated with DNA repair. Poly-PR interacts with FUS both in vitro and in vivo, phase separates with FUS in a poly-PR concentration-dependent manner, and impairs the fluidity of FUS droplets in vitro and in cells. Moreover, poly-PR impedes the recruitment of FUS and its downstream protein XRCC1 to DNA damage foci after microirradiation. Importantly, overexpression of FUS significantly decreased the level of DNA damage and dramatically reduced poly-PR-induced cell death. Our data suggest the severe DNA damage caused by poly-PR and highlight the interconnection between poly-PR and FUS, enlightening the potential therapeutic role of FUS in alleviating poly-PR-induced cell toxicity.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas/genética , Dano ao DNA/genética , Arginina/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/genética
2.
EMBO Rep ; 24(4): e56374, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36876523

RESUMO

ACE2 is a major receptor for cellular entry of SARS-CoV-2. Despite advances in targeting ACE2 to inhibit SARS-CoV-2 binding, strategies to flexibly and sufficiently reduce ACE2 levels for the prevention of SARS-CoV-2 infection have not been explored. Here, we reveal vitamin C (VitC) administration as a potent strategy to prevent SARS-CoV-2 infection. VitC reduces ACE2 protein levels in a dose-dependent manner, while even a partial reduction in ACE2 levels can greatly inhibit SARS-CoV-2 infection. Further studies reveal that USP50 is a crucial regulator of ACE2 levels. VitC blocks the USP50-ACE2 interaction, thus promoting K48-linked polyubiquitination of ACE2 at Lys788 and subsequent degradation of ACE2 without affecting its transcriptional expression. Importantly, VitC administration reduces host ACE2 levels and greatly blocks SARS-CoV-2 infection in mice. This study reveals that ACE2 protein levels are down-regulated by an essential nutrient, VitC, thereby enhancing protection against infection of SARS-CoV-2 and its variants.


Assuntos
COVID-19 , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Ácido Ascórbico/farmacologia
3.
Cell Mol Life Sci ; 81(1): 128, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472451

RESUMO

Epigenetic dysregulation that leads to alterations in gene expression and is suggested to be one of the key pathophysiological factors of Parkinson's disease (PD). Here, we found that α-synuclein preformed fibrils (PFFs) induced histone H3 dimethylation at lysine 9 (H3K9me2) and increased the euchromatic histone methyltransferases EHMT1 and EHMT2, which were accompanied by neuronal synaptic damage, including loss of synapses and diminished expression levels of synaptic-related proteins. Furthermore, the levels of H3K9me2 at promoters in genes that encode the synaptic-related proteins SNAP25, PSD95, Synapsin 1 and vGLUT1 were increased in primary neurons after PFF treatment, which suggests a linkage between H3K9 dimethylation and synaptic dysfunction. Inhibition of EHMT1/2 with the specific inhibitor A-366 or shRNA suppressed histone methylation and alleviated synaptic damage in primary neurons that were treated with PFFs. In addition, the synaptic damage and motor impairment in mice that were injected with PFFs were repressed by treatment with the EHMT1/2 inhibitor A-366. Thus, our findings reveal the role of histone H3 modification by EHMT1/2 in synaptic damage and motor impairment in a PFF animal model, suggesting the involvement of epigenetic dysregulation in PD pathogenesis.


Assuntos
Transtornos Motores , Doença de Parkinson , Animais , Camundongos , Histonas/metabolismo , Metilação , Neurônios/metabolismo , alfa-Sinucleína/metabolismo
4.
Stem Cells ; 41(2): 153-168, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36573461

RESUMO

Mesenchymal stem cells (MSCs) have been demonstrated to protect against fatty liver diseases, but the mechanism is still not clear. Menstrual blood-derived endometrial stem cells (MenSCs) are a substantial population of MSCs that can be obtained in a noninvasive manner. In the present study, we investigated the therapeutic effects and underlying mechanisms of MenSC transplantation in mouse models of diet-induced nonalcoholic fatty liver disease (NAFLD). The results revealed that MenSCs markedly promoted hepatic glycogen storage and attenuated lipid accumulation after transplantation. We further identified Rnf186 as a novel regulator involved in MenSC-based therapy for NAFLD mice. Rnf186 deficiency substantially inhibited high-fat diet-induced insulin resistance and abnormal hepatic glucose and lipid metabolism in mice. Mechanistically, Rnf186 regulated glucose and lipid metabolism through the AMPK-mTOR pathway. More importantly, hepatocyte growth factor (HGF) is identified as the key functional cytokine secreted by MenSCs and decreases the expression of hepatic Rnf186. HGF deficient MenSCs cannot attenuate glucose and lipid accumulation after transplantation in NAFLD mice. Collectively, our results provide preliminary evidence for the protective roles of HGF secreted by MenSCs in fatty liver diseases through downregulation of hepatic Rnf186 and suggest that MenSCs or Rnf186 may be an alternative therapeutic approach/target for the treatment of NAFLD.


Assuntos
Endométrio , Fator de Crescimento de Hepatócito , Células-Tronco Mesenquimais , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Proliferação de Células , Regulação para Baixo , Glucose/metabolismo , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Lipídeos , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Menstruação/sangue , Menstruação/genética , Menstruação/metabolismo , Endométrio/citologia , Endométrio/metabolismo
5.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782742

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Assuntos
Nucléolo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sondas Moleculares/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Metilação , Mieloma Múltiplo/metabolismo , Nucleossomos/metabolismo
6.
Reprod Biomed Online ; 48(4): 103727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402677

RESUMO

RESEARCH QUESTION: Does type 1 diabetes mellitus (T1DM) affect reproductive health of female patients? What is the potential mechanism of reproductive dysfunction in female patients caused by T1DM? DESIGN: Preliminary assessment of serum levels of female hormones in women with or without T1DM. Then histological and immunological examinations were carried out on the pancreas, ovaries and uteri at different stages in non-obese diabetic (NOD) and Institute of Cancer Research (ICR) mice, as well as assessment of their fertility. A protein array was carried out to detect the changes in serum inflammatory cytokines. Furthermore, RNA-sequencing was used to identify the key abnormal genes/pathways in ovarian and uterine tissues of female NOD mice, which were further verified at the protein level. RESULTS: Testosterone levels were significantly increased (P = 0.0036) in female mice with T1DM. Increasing age in female NOD mice was accompanied by obvious lymphocyte infiltration in the pancreatic islets. Moreover, the levels of serum inflammatory factors in NOD mice were sharply increased with increasing age. The fertility of female NOD mice declined markedly, and most were capable of conceiving only once. Furthermore, ovarian and uterine morphology and function were severely impaired in NOD female mice. Additionally, ovarian and uterine tissues revealed that the differentially expressed genes were primarily enriched in metabolism, cytokine-receptor interactions and chemokine signalling pathways. CONCLUSION: T1DM exerts a substantial impairment on female reproductive health, leading to diminished fertility, potentially associated with immune disorders and alterations in energy metabolism.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Feminino , Animais , Camundongos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Camundongos Endogâmicos NOD , Pâncreas/metabolismo , Pâncreas/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Citocinas/metabolismo , Inflamação/metabolismo
7.
Inflamm Res ; 73(3): 345-362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157008

RESUMO

OBJECTIVES: Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS: The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS: AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION: We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.


Assuntos
Colite , Saponinas , Ratos , Camundongos , Animais , Piruvato Carboxilase/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/metabolismo , Saponinas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Macrófagos/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
8.
Physiol Plant ; 176(1): e14207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38383826

RESUMO

Root phenes are associated with the absorptive efficiency of water and fertilizers. However, there are few reports on the genetic variation and stability of peanut (Arachis hypogaea L.) root architecture under different environments. In this study, the diversity, variance and stability of root phenes of 89 peanut varieties were investigated with shovelomics (high throughput phenotyping of root system architecture) for two years in both field and laboratory experiments. The root phenes of these peanut genotypes presented rich diversity; for example, the value of total root length (TRL) ranged from 347.84 cm to 1013.80 cm in the field in 2018, and from 55.14 cm to 206.22 cm in the laboratory tests. The root phenes of different genotypes varied differently; for example, the coefficient of variation (CV) of TRL ranged from 24.0 to 83.5 across the two-year field test. Field and laboratory evaluations were highly correlated, especially on lateral root density (LRD) and root angle (RA), and the quadrant graph analysis of LRD and RA implied that 69.7% of the roots belong to the same type. These not only further reflect root phenes stability through different environment but also demonstrate that some root phenes identified at early stage can indicate their status at later growth stage. In addition, root phenes showed a strong correlation with shoot growth, especially root dry weight (RDW), TRL and(nodule number)NN. Thus, laboratory tests in combination with field shovelomics can efficiently screen and select genotypes with contrasting root phenes to optimize water and nutrient management.


Assuntos
Arachis , Fabaceae , Arachis/genética , Raízes de Plantas/genética , Genótipo , Água
9.
Fish Shellfish Immunol ; 147: 109400, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253137

RESUMO

Apoptosis is a physiological cell death phenomenon, representing one of the fundamental physiological mechanisms for maintaining homeostasis in living organisms. Previous studies have observed typical apoptotic features in Carassius auratus gibelio caudal fin cell (GiCF) infected with Cyprinid herpesvirus 2 (CyHV-2), and found a significant up-regulation of ccBAX expression in these infected cells. However, the specific apoptotic mechanism involved remains unclear. In this study, we utilized the GiCF cell line to investigate the apoptotic mechanism during CyHV-2 infection. Immunofluorescence staining revealed translocation of ccBAX into mitochondria upon CyHV-2 infection. Flow cytometry analysis demonstrated that overexpression of ccBAX expedited virus-induced apoptosis, characterized by heightened mitochondrial depolarization, increased transcriptional levels of Cytochrome c (Cyto c) in both the cytoplasm and mitochondria, and augmented Caspase 3/7 enzyme activity. Bax inhibitor peptide V5 (BIP-V5), an inhibitor interfering with the function of Bax proteins, inhibited Bax-mediated apoptotic events through the mitochondrial pathway and attenuated apoptosis induced by CyHV-2. In this study, it was identified for the first time that CyHV-2 induces apoptosis via the mitochondrial pathway in GiCF cells, bridging an important gap in our understanding regarding cell death mechanisms induced by herpesvirus infections in fish species. These findings provide a theoretical basis for comprehending viral apoptotic regulation mechanisms and the prevention and control of cellular pathologies caused by CyHV-2 infection.


Assuntos
Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Proteína X Associada a bcl-2 , Herpesviridae/fisiologia , Apoptose/genética , Mitocôndrias , Carpa Dourada
10.
Nutr Metab Cardiovasc Dis ; 34(7): 1649-1659, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749785

RESUMO

BACKGROUND AND AIMS: This study aimed to explore potential hub genes and pathways of plaque vulnerability and to investigate possible therapeutic targets for acute coronary syndrome (ACS). METHODS AND RESULTS: Four microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), weighted gene coexpression networks (WGCNA) and immune cell infiltration analysis (IIA) were used to identify the genes for plaque vulnerability. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Disease Ontology, Gene Ontology annotation and protein-protein interaction (PPI) network analyses were performed to explore the hub genes. Random forest and artificial neural networks were constructed for validation. Furthermore, the CMap and Herb databases were employed to explore possible therapeutic targets. A total of 168 DEGs with an adjusted P < 0.05 and approximately 1974 IIA genes were identified in GSE62646. Three modules were detected and associated with CAD-Class, including 891 genes that can be found in GSE90074. After removing duplicates, 114 hub genes were used for functional analysis. GO functions identified 157 items, and 6 pathways were enriched for the KEGG pathway at adjusted P < 0.05 (false discovery rate, FDR set at < 0.05). Random forest and artificial neural network models were built based on the GSE48060 and GSE34822 datasets, respectively, to validate the previous hub genes. Five genes (GZMA, GZMB, KLRB1, KLRD1 and TRPM6) were selected, and only two of them (GZMA and GZMB) were screened as therapeutic targets in the CMap and Herb databases. CONCLUSION: We performed a comprehensive analysis and validated GZMA and GZMB as a target for plaque vulnerability, which provides a therapeutic strategy for the prevention of ACS. However, whether it can be used as a predictor in blood samples requires further experimental verification.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Placa Aterosclerótica , Mapas de Interação de Proteínas , Humanos , Síndrome Coronariana Aguda/genética , Síndrome Coronariana Aguda/terapia , Redes Neurais de Computação , Ruptura Espontânea , Predisposição Genética para Doença , Transdução de Sinais , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma , Terapia de Alvo Molecular , Marcadores Genéticos , Fenótipo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/terapia
11.
BMC Med Imaging ; 24(1): 137, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844854

RESUMO

BACKGROUND: This study investigated whether the Combat compensation method can remove the variability of radiomic features extracted from different scanners, while also examining its impact on the subsequent predictive performance of machine learning models. MATERIALS AND METHODS: 135 CT images of Credence Cartridge Radiomic phantoms were collected and screened from three scanners manufactured by Siemens, Philips, and GE. 100 radiomic features were extracted and 20 radiomic features were screened according to the Lasso regression method. The radiomic features extracted from the rubber and resin-filled regions in the cartridges were labeled into different categories for evaluating the performance of the machine learning model. Radiomics features were divided into three groups based on the different scanner manufacturers. The radiomic features were randomly divided into training and test sets with a ratio of 8:2. Five machine learning models (lasso, logistic regression, random forest, support vector machine, neural network) were employed to evaluate the impact of Combat on radiomic features. The variability among radiomic features were assessed using analysis of variance (ANOVA) and principal component analysis (PCA). Accuracy, precision, recall, and area under the receiver curve (AUC) were used as evaluation metrics for model classification. RESULTS: The principal component and ANOVA analysis results show that the variability of different scanner manufacturers in radiomic features was removed (P˃0.05). After harmonization with the Combat algorithm, the distributions of radiomic features were aligned in terms of location and scale. The performance of machine learning models for classification improved, with the Random Forest model showing the most significant enhancement. The AUC value increased from 0.88 to 0.92. CONCLUSIONS: The Combat algorithm has reduced variability in radiomic features from different scanners. In the phantom CT dataset, it appears that the machine learning model's classification performance may have improved after Combat harmonization. However, further investigation and validation are required to fully comprehend Combat's impact on radiomic features in medical imaging.


Assuntos
Aprendizado de Máquina , Imagens de Fantasmas , Humanos , Tomografia Computadorizada por Raios X , Tomógrafos Computadorizados , Análise de Componente Principal , Redes Neurais de Computação , Algoritmos , Radiômica
12.
Anim Genet ; 55(1): 99-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087834

RESUMO

Niemann-Pick disease type C1 (NPC1) is a lysosomal lipid storage disease caused by NPC1 gene mutation. Our previous study found that, compared with wild-type (Npc1+/+ ) mice, the renal volume and weight of Npc1 gene mutant (Npc1-/- ) mice were significantly reduced. We speculate that Npc1 gene mutations may affect the basic structure of the kidneys of Npc1-/- mice, and thus affect their function. Therefore, we randomly selected postnatal Day 28 (P28) and P56 Npc1+/+ and Npc1-/- mice, and observed the renal structure and pathological changes by haematoxylin-eosin staining. The level of renal fibrosis was detected by immunofluorescence histochemical techniques, and western blotting was used to detect the expression levels of apoptosis-related proteins and canonical Wnt signalling pathway related proteins. The results showed that compared with Npc1+/+ mice, the kidneys of P28 and P56 Npc1-/- mice underwent apoptosis and fibrosis; furthermore, there were obvious vacuoles in the cytoplasm of renal tubular epithelial cells of P56 Npc1-/- mice, the cell bodies were loose and foam-like, and the canonical Wnt signalling pathway was abnormally activated. These results showed that Npc1 gene mutation can cause pathological changes in the kidneys of mice. As age increased, vacuoles developed in the cytoplasm of renal tubular epithelial cells, and apoptosis of renal cells, abnormal activation of the Wnt signalling pathway, and promotion of renal fibrosis increased.


Assuntos
Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Animais , Camundongos , Fibrose , Rim/metabolismo , Rim/patologia , Mutação , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia
13.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339675

RESUMO

Under the conditions of a mechanical fault in a motor, mechanical vibration of a specific frequency can be generated. The electrical contact points directly connected to the motor can vibrate at the same frequency. The electrical contact points with poor contact can easily produce a series arc fault under vibration conditions, which affects the reliability of the power supply. In order to detect the series arc fault under different vibration conditions, the arc fault generator is connected between the back end of the frequency converter and the motor. An arc fault experiment under different vibration conditions was carried out and the fault phase current and arc voltage signals were collected. In this paper, the noise-assisted multivariate empirical mode decomposition and the correlation coefficient between each intrinsic mode function are used to select the fault feature signals. Then, the reconstructed signal is input into the series arc fault model combining a multi-scale convolutional neural network and a bidirectional long short-term memory network for training. The research results show that the series arc fault detection method proposed in this paper can effectively detect the series arc fault and can preliminarily identify the type of motor fault causing the mechanical vibration of the motor; the model has good noise immunity and generalization.

14.
J Environ Manage ; 356: 120633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513579

RESUMO

Although straw returning combined with blended controlled-release urea fertilizer (BUFS) has been shown to improve wheat-maize rotation system productivity, their effects on greenhouse gas (GHG) emissions, carbon footprints (CF), and net ecosystem economic benefits (NEEB) are still unknown. Life cycle assessment was used to investigate a long-term (2013-2022) wheat-maize rotation experiment that included straw combined with two N fertilizer types [BUFS and (conventional urea fertilizer) CUFS] and straw-free treatments (BUF and CUF). The results showed that BUFS and CUFS treatments increased the annual yield by 13.8% and 11.5%, respectively, compared to BUF and CUF treatments. The BUFS treatment increased the yearly yield by 13.8% compared to the CUFS treatment. Since BUFS and CUFS treatments increased soil organic carbon (SOC) sink sequestration by 25.0% and 27.0% compared to BUF and CUF treatments, they reduced annual GHG emissions by 7.1% and 4.7% and CF per unit of yield (CFY) by 13.7% and 9.6%, respectively. BUFS treatment also increased SOC sink sequestration by 20.3%, reduced GHG emissions by 10.7% and CFY by 23.0% compared to CUFS treatment. It is worth noting that the BUFS and CUFS treatments increased the annual ecological costs by 41.6%, 26.9%, and health costs by 70.1% and 46.7% compared to the BUF and CUF treatments, but also increased the net yield benefits by 9.8%, 6.8%, and the soil nutrient cycling values by 29.2%, 27.3%, and finally improved the NEEB by 10.1%, 7.3%, respectively. Similar results were obtained for the BUFS treatment compared to the CUFS treatment, ultimately improving the NEEB by 23.1%. Based on assessing yield, GHG emissions, CF, and NEEB indicators, the BUFS treatment is recommended as an ideal agricultural fertilization model to promote sustainable and clean production in the wheat-maize rotation system and to protect the agroecological environment.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Solo , Fertilizantes , Carbono/análise , Ecossistema , Preparações de Ação Retardada , Agricultura/métodos , Zea mays , Triticum , China , Óxido Nitroso/análise
15.
Fish Physiol Biochem ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842792

RESUMO

The unsynchronized growth of the large yellow croaker (Larimichthys crocea), which impacts growth efficiency, poses a challenge for aquaculture practitioners. In our study, juvenile stocks of large yellow croaker were sorted by size after being cultured in offshore cages for 4 months. Subsequently, individuals from both the fast-growing (FG) and slow-growing (SG) groups were sampled for analysis. High-throughput RNA-Seq was employed to identify genes and pathways that are differentially expressed during varying growth rates, which could suggest potential physiological mechanisms that influence growth rate. Our transcriptome analysis identified 382 differentially expressed genes (DEGs), comprising 145 upregulated and 237 downregulated genes in comparison to the SG group. GO and KEGG enrichment analyses indicated that these DEGs are predominantly involved in signal transduction and biochemical metabolic pathways. Quantitative PCR (qPCR) results demonstrated that cat, fasn, idh1, pgd, fgf19, igf2, and fads2 exhibited higher expression levels, whereas gadd45b and gadd45g showed lower expression compared to the slow-growing group. In conclusion, the differential growth rates of large yellow croaker are intricately associated with cellular proliferation, metabolic rates of the organism, and immune regulation. These findings offer novel insights into the molecular mechanisms and regulatory aspects of growth in large yellow croaker and enhance our understanding of growth-related genes.

16.
BMC Oral Health ; 24(1): 179, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311720

RESUMO

OBJECTIVE: To clarify whether the 3D printing model has auxiliary functions in toto extraction of donor tooth in autotransplantation cases. METHODS: Two hundred and sixty patients who would have operation of ATT were divided into two groups. In group 1, determination of the tooth extraction in toto was predicted only according to the clinical and imaging examination. In group 2, the prediction was performed according to the clinical and imaging examination as well as the 3D model of donor tooth pre-extraction. A prespctive clinical study was designed on intra-group comparison between the predicted and actual donor teeth situation when extraction in cases of ATT. The consistent rate for the predicted results and the actual results were compared with the two groups. RESULTS: A remarkable difference was observed between the predicted results and the actual results of tooth positions and root numbers in group without model (p < 0,05). The consistency rate of the model group (94.62%) was significantly higher than that of non 3D model group (86.15%) (p = 0.034). CONCLUSION: The 3D printing model for the donor tooth is helpful for dentists to predict the accuracy of toto extraction of donor teeth in autotransplantation cases.


Assuntos
Compostos de Quinolínio , Cirurgia Assistida por Computador , Tiazóis , Dente , Humanos , Transplante Autólogo/métodos , Cirurgia Assistida por Computador/métodos , Extração Dentária , Impressão Tridimensional
17.
Int Ophthalmol ; 44(1): 116, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411755

RESUMO

PURPOSE: We aimed to identify and verify potential biomarkers in the development of myopia associated with immunogenic cell death (ICD). METHODS: We download high myopia (HM) dataset GSE136701 from Gene Expression Omnibus. Differentially expressed genes in HM were identified to overlapped with ICD-related genes. Least absolute shrinkage and selection operator were used to select the Hub genes. Furthermore, the correlation between the hub genes and immune infiltration, immune response activities, and hub genes Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis was investigated using Spearman's rank correlation. Prediction of the miRNAs upstream of the Hub genes was based on the TargetScan database. We used guinea pig lens-induced myopia model's scleral tissues performed quantitative real-time polymerase chain reaction. RESULTS: We identified overlapped with ICD-related genes (LY96, IL1A, IL33, and AGER) and two genes (LY96 and AGER) as hub genes. Single sample gene set enrichment analysis and Spearman's rank correlation revealed that hub gene expression levels in HM were significantly correlated with the infiltration percentages of CD56dim natural killer cells, macrophages, immature B cells, and the immune response activities of APC co-stimulation and Kyoto Encyclopedia of Genes and Genomes pathways, such as terpenoid backbone biosynthesis, aminoacyl-trna biosynthesis, Huntington's disease, oxidative phosphorylation; there were a few additional signaling pathways compared to normal samples. Additionally, several miRNA were predicted as upstream regulators of LY96 and AGER. LY96 was identified as a significantly differentially expressed biomarker in myopia guinea pig's scleral tissues, as verified by qPCR. CONCLUSION: LY96 was identified and verified as a ICD-related potential myopia biomarker. Molecular mechanisms or pathways involved in myopia development by LY96 requires further research.


Assuntos
Doença de Huntington , MicroRNAs , Miopia , Animais , Cobaias , Morte Celular Imunogênica , Aprendizado de Máquina , Biomarcadores , MicroRNAs/genética , Miopia/diagnóstico , Miopia/genética
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 67-73, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322536

RESUMO

Objective: To investigate how substrate stiffness regulates the morphology of primary cilia in chondrocytes and to illustrate how Piezo1 mediates the morphology regulation of primary cilia by substrate stiffness. Methods: Polydimethylsiloxane (PDMS) curing agent and the main agent (Dow Corning, Beijing, China) were mixed at the ratio of 1∶10 (stiff), 1∶50 (medium stiffness), and 1∶70 (soft), respectively, to prepare substrate films with the thickness of 1 mm at different levels of stiffness, including stiff substrate of (2.21±0.12) MPa, medium-stiffness substrate of (54.47±6.06) kPa, and soft substrate of (2.13±0.10) kPa. Chondrocytes were cultured with the substrates of three different levels of stiffness. Then, the cells were treated with Tubastatin A (Tub A) to inhibit histone deacetylase 6 (HDAC6), Piezo1 activator Yoda1, and inhibitor GsMTx4, respectively. The effects of HDAC6, Yoda1, and GsMTx4 on chondrocyte morphology and the length of primary cilia were analyzed through immunofluorescence staining. Results: The stiff substrate increased the spread area of the chondrocytes. Immunofluorescence assays showed that the cytoskeleton and the nuclear area of the cells on the stiff substrate were significantly increased (P<0.05) and the primary cilia were significantly extended (P<0.05) compared with those on the medium-stiffness and soft substrates. However, the presence rate of primary cilia was not affected. The HDAC6 activity of chondrocytes increased with the decrease in substrate stiffness. When the activity of HDAC6 was inhibited, the cytoskeletal area, the nuclei area, and the primary cilium length were increased more significantly on the stiff substrate (P<0.05). Further testing showed that Piezo1 activator and inhibitor could regulate the activity of HDAC6 in chondrocytes, and that the length of primary cilia was significantly increased after treatment with the activator Yoda1 (P<0.05). On the other hand, the length of primary cilia was significantly shortened on the stiff substrate after treatment with the inhibitor GsMTx4 (P<0.05). Conclusion: Both substrate stiffness and Piezo1 may affect the morphology of chondrocyte primary cilia by regulating HDAC6 activity.


Assuntos
Condrócitos , Cílios , Canais Iônicos , Células Cultivadas , Cílios/fisiologia , Citoesqueleto
19.
J Biol Chem ; 298(3): 101623, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074427

RESUMO

Arabidopsis LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a unique homolog of HP1 in Drosophila, plays important roles in plant development, growth, and architecture. In contrast to specific binding of the HP1 chromodomain to methylated H3K9 histone tails, the chromodomain of LHP1 has been shown to bind to both methylated H3K9 and H3K27 histone tails, and LHP1 carries out its function mainly via its interaction with these two epigenetic marks. However, the molecular mechanism for the recognition of methylated histone H3K9/27 by the LHP1 chromodomain is still unknown. In this study, we characterized the binding ability of LHP1 to histone H3K9 and H3K27 peptides and found that the chromodomain of LHP1 binds to histone H3K9me2/3 and H3K27me2/3 peptides with comparable affinities, although it exhibited no binding or weak binding to unmodified or monomethylated H3K9/K27 peptides. Our crystal structures of the LHP1 chromodomain in peptide-free and peptide-bound forms coupled with mutagenesis studies reveal that the chromodomain of LHP1 bears a slightly different chromodomain architecture and recognizes methylated H3K9 and H3K27 peptides via a hydrophobic clasp, similar to the chromodomains of human Polycomb proteins, which could not be explained only based on primary structure analysis. Our binding and structural studies of the LHP1 chromodomain illuminate a conserved ligand interaction mode between chromodomains of both animals and plants, and shed light on further functional study of the LHP1 protein.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Histonas , Fatores de Transcrição , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Peptídeos/química
20.
Anal Chem ; 95(49): 18268-18277, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011622

RESUMO

Exosomal PD-L1 has been increasingly considered a noninvasive and accurate predictive marker for immunotherapy treatment response. However, the clinical monitoring of exosomal PD-L1 expression is still limited by its complex biological environment as well as the lack of a robust isolation strategy. Here, a Tim4-functionalized magnetic core-shell metal-organic framework (denoted as Fe3O4@SiO2-ILI-01@Tim4) was facilely constructed via layer-by-layer assembly. Owing to the strongly hydrophilic organic ligand of 1,3-bis(4-carboxybutyl)imidazolium bromide (ILI), magnetic Fe3O4@SiO2-ILI-01@Tim4 was endowed with the merits of low nonspecific adsorption and quick, easy, and convenient isolation of exosomes. The capture efficiency of Fe3O4@SiO2-ILI-01@Tim4 reached as high as 90.3 ± 0.5% and the recovery rate for exosomes was up to 93.0 ± 6.1%. The purity of the isolated exosomes was 7.5 times higher than that via the ultracentrifugation (UC) method. By further combination with immunofluorescence assay, high throughput and noninvasive exosomal PD-L1 detection for accurate immunotherapy response prediction was achieved. The prognosis accuracy of the developed Fe3O4@SiO2-ILI-01@Tim4-based strategy reached 85.7%, whereas the prognosis accuracy of the clinical gold standard, the PD-L1 combined positive score (CPS) test, was only 57.1%. Most interestingly, the developed method is especially suitable for those patients receiving false negative results in the CPS test. The proposed Fe3O4@SiO2-ILI-01@Tim4 is a highly efficient and robust technique showing great potential in high throughput and noninvasive exosomal PD-L1 detection for accurately predicting immunotherapy efficacy.


Assuntos
Exossomos , Estruturas Metalorgânicas , Humanos , Antígeno B7-H1 , Dióxido de Silício , Imunoterapia , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa