Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Small ; 20(16): e2306323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039497

RESUMO

Room temperature phosphorescent (RTP) materials with long-lived, excitation-dependent, and time-dependent phosphorescence are highly desirable but very hard to achieve. Herein, this work reports a rational strategy of multiple wavelength excitation and time-dependent dynamic RTP color by confining silane-functionalized carbon dots (CDs) in a silica matrix (Si-CDs@SiO2). The Si-CDs@SiO2 possesses unique green-light-excitation and a change in phosphorescence color from yellow to green. A slow-decaying phosphorescence at 500 nm with a lifetime of 1.28 s and a fast-decaying phosphorescence at 580 nm with a lifetime of 0.90 s are observed under 365 nm of irradiation, which originated from multiple surface triplet states of the Si-CDs@SiO2. Given the unique dynamic RTP properties, the Si-CDs@SiO2 are demonstrated for applications in fingerprint recognition and multidimensional dynamic information encryption. These findings will open an avenue to explore dynamic phosphorescent materials and significantly broaden their applications.

2.
Chem Rev ; 122(15): 12495-12543, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35759536

RESUMO

Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.


Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos
3.
Angew Chem Int Ed Engl ; 63(4): e202308951, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38052724

RESUMO

Nanohybrid photosystems have advantages in converting solar energy into electricity, while natural photosystems based solar-powered energy-storage device is still under developed. Here, we fabricate a new kind of photo-rechargeable zinc-ion hybrid capacitor (ZHC) benefiting from light-harvesting carbon dots (CDs) and natural thylakoids for realizing solar energy harvesting and storage simultaneously. Under solar light irradiation, the embedded CDs in thylakoids (CDs/Thy) can convert the less absorbed green light into highly absorbed red light for thylakoids, besides, Förster resonance energy transfer (FRET) between CDs and Thy also occurs, which facilitates the photoelectrons generation during thylakoids photosynthesis, thereby resulting in 6-fold photocurrent output in CDs/Thy hybrid photosystem, compared to pristine thylakoids. Using CDs/Thy as the photocathode in ZHCs, the photonic hybrid capacitor shows photoelectric conversion and storage features. CDs can improve the photo-charging voltage response of ZHCs to ≈1.2 V with a remarkable capacitance enhancement of 144 % under solar light. This study provides a promising strategy for designing plant-based photonic and electric device for solar energy harvesting and storage.

4.
Small ; 19(11): e2206852, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36526587

RESUMO

The 3D supramolecular framework (3D-SF) is constructed in this work through the hydrogen bond assisted self-assembly of spherical dendritic nanopolymer to regulate the flexibility, stability, and resistive switching (RS) performance of perovskite resistive random-access memory (RRAM). Herein, the 3D-SF network acts as the perovskite crystallization template to regulate the perovskite crystallization process due to its coordination interaction of functional groups with the perovskite grains, presenting the uniform, pinhole-free, and compact perovskite morphology for stable flexible RRAM. The 3D-SF network in situ stays at the perovskite intergranular boundaries to crosslink the perovskite grains. The RS performance of 3D-SF-modified perovskite RRAM device is evidently improved to the ON/OFF ratio of 105 , the cycle number of 500 times, and the data retention time of 104 s. The 50-days exposure of unencapsulated RRAM device at ambient environment still makes the ON/OFF ratio to be kept at ≈104 , indicating the potential of long-term stable multilevel storage in the high-density data storage. The bending action under different radius also does not change the RS performance due to the excellent bending-resistant ability of 3D-SF-modified perovskite film. This work explores a novel polymer additive strategy to construct the 3D supramolecular framework for stable flexible perovskite optoelectronic devices.

5.
Small ; 19(43): e2303344, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376809

RESUMO

Developing solid-state electrolyte with sufficient ionic conduction and flexible-intimate interface is vital to advance fast-charging solid-state lithium batteries. Solid polymer electrolyte yields the promise of interfacial compatibility, yet its critical bottleneck is how to simultaneously achieve high ionic conductivity and lithium-ion transference number. Herein, single-ion conducting network polymer electrolyte (SICNP) enabling fast charging is proposed to positively realize fast lithium-ion locomotion with both high ionic conductivity of 1.1 × 10-3 S cm-1 and lithium-ion transference number of 0.92 at room temperature. Experimental characterization and theoretical simulations demonstrate that the construction of polymer network structure for single-ion conductor not only facilitates fast hopping of lithium ions for boosting ionic kinetics, but also enables a high dissociation level of the negative charge for lithium-ion transference number close to unity. As a result, the solid-state lithium batteries constructed by coupling SICNP with lithium anodes and various cathodes (e.g., LiFePO4 , sulfur, and LiCoO2 ) display impressive high-rate cycling performance (e.g., 95% capacity retention at 5 C for 1000 cycles in LiFePO4 |SICNP|lithium cell) and fast-charging capability (e.g., being charged within 6 min and discharged over than 180 min in LiCoO2 |SICNP|lithium cell). Our study provides a prospective direction for solid-state electrolyte that meets the lithium-ion dynamics for practical fast-charging solid-state lithium batteries.

6.
Small ; 19(31): e2206222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36907994

RESUMO

Optimizing photosynthesis is imperative for providing energy and organics for all life on the earth. Here, carbon dots doped with pyridinic nitrogen (named lev-CDs) are synthesized by the one-pot hydrothermal method, and the structure-function relationship between functional groups on lev-CDs and photosynthesis of Chlorella pyrenoidosa (C. pyrenoidosa) is proposed. Pyridinic nitrogen plays a key role in the positive effect on photosynthesis caused by lev-CDs. In detail, lev-CDs act as electron donors to supply photo-induced electrons to P680+ and QA+ , causing electron transfer from lev-CDs to the photosynthetic electron transport chain in the photosystems. In return, the recombination efficiency of electron-hole pairs on lev-CDs decreases. As a result, the electron transfer rate in the electron transport chain, the activity of photosystem II, and the Calvin cycle are enhanced. Moreover, the electron transfer rate between C. pyrenoidosa and external circumstances enhanced by lev-CDs is about 50%, and electrons exported from C. pyrenoidosa can be used to reduce iron(III). This study is of great significance for engineering nanomaterials to improve photosynthesis.


Assuntos
Chlorella , Pontos Quânticos , Transporte de Elétrons , Elétrons , Carbono/farmacologia , Nitrogênio , Compostos Férricos/farmacologia , Fotossíntese
7.
Physiol Plant ; 175(6): e14072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148219

RESUMO

Under global warming, the availability of water resources is one of the most important factors affecting trait evolution and plant species distribution across terrestrial ecosystems, and the relationships between drought resistance strategies and the hydrological niche characteristics of plants are worth studying. We continuously monitored physiological drought response parameters such as gs , Tr , proline, soluble sugar, gene expression and activities of SOD, POD, and CAT to assess drought resistance strategies of Platycarya longipes and Lindera communis; determined plant soil hydrological niche separation by stable H and O isotope analysis; and analysed the effects of interspecific water competition by comparing the differences in morphological and physiological parameters between solo and mixed planting. Under drought stress, L. communis exhibited a drought avoidance strategy, and P. longipes exhibited a drought tolerance strategy. L. communis utilized the water within the shallow soil layer, while P. longipes mainly utilized the water in the deeper soil layer; there were fewer parameters with significant differences between the solo planting and the mixed planting of L. communis compared to P. longipes. Overall, P. longipes benefited from coexistence with L. communis under drought stress, which may be because L. communis employs a drought avoidance strategy, reducing soil water consumption in the drought environment. These results suggested that differences in functional traits or resistance strategies among species benefit species' coexistence in a community under drought stress.


Assuntos
Secas , Ecossistema , Solo , Plantas/metabolismo , Água/metabolismo
8.
Macromol Rapid Commun ; 44(12): e2300019, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37027787

RESUMO

Dithieno[3',2':3,4;2",3":5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT) is a newly emerging building block to construct effective photovoltaic polymers. Organic solar cells (OSCs) based on DTBT-based polymers have realized power conversion efficiency (PCEs) over 18%, despite their relatively low open-circuit voltage (VOC ) of 0.8-0.95 V. To extend the application of DTBT-based polymers in high-voltage OSCs, herein, D18-Cl and PE55 are used to combine with a wide-bandgap non-fullerene acceptor (NFA), BTA3, and achieve ultrahigh VOC of 1.30 and 1.28 V, respectively. Compared with D18-Cl based on tricyclic benzodithiophene (BDT) segment, PE55 containing the pentacyclic dithienobenzodithiophene (DTBDT) unit possesses better hole mobility, higher charge-transfer efficiency, and more desirable phase separation. Hence, PE55:BTA3 blend exhibits a higher efficiency of 9.36% than that of D18-Cl: BTA3 combination (6.30%), which is one of the highest values for OSCs at ≈1.3 V VOC . This work attests that DTBT-based p-type polymers are ideal for the application in high-voltage OSCs.


Assuntos
Polímeros , Tiadiazóis
9.
Ecotoxicol Environ Saf ; 254: 114757, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950987

RESUMO

Soil and water are increasingly at risk of contamination from the toxic heavy metals lead (Pb) and cadmium (Cd). Arabis paniculata (Brassicaceae) is a hyperaccumulator of heavy metals (HMs) found widely distributed in areas impacts by mining activities. However, the mechanism by which A. paniculata tolerates HMs is still uncharacterized. For this experiment, we employed RNA sequencing (RNA-seq) in order to find Cd (0.25 mM)- and Pb (2.50 mM)-coresponsive genes A. paniculata. In total, 4490 and 1804 differentially expressed genes (DEGs) were identified in root tissue, and 955 and 2209 DEGs were identified in shoot tissue, after Cd and Pb exposure, respectively. Interestingly in root tissue, gene expression corresponded similarly to both Cd and Pd exposure, of which 27.48% were co-upregulated and 41.00% were co-downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that the co-regulated genes were predominantly involved in transcription factors (TFs), cell wall biosynthesis, metal transport, plant hormone signal transduction, and antioxidant enzyme activity. Many critical Pb/Cd-induced DEGs involved in phytohormone biosynthesis and signal transduction, HM transport, and transcription factors were also identified. Especially the gene ABCC9 was co-downregulated in root tissues but co-upregulated in shoot tissues. The co-downregulation of ABCC9 in the roots prevented Cd and Pb from entering the vacuole rather than the cytoplasm for transporting HMs to shoots. While in shoots, the ABCC9 co-upregulated results in vacuolar Cd and Pb accumulation, which may explain why A. paniculata is a hyperaccumulator. These results will help to reveal the molecular and physiological processes underlying tolerance to HM exposure in the hyperaccumulator A. paniculata, and aid in future efforts to utilize this plant in phytoremediation.


Assuntos
Arabis , Metais Pesados , Poluentes do Solo , Cádmio/metabolismo , Arabis/genética , Arabis/metabolismo , Chumbo/análise , Transcriptoma , Metais Pesados/análise , Biodegradação Ambiental , Reguladores de Crescimento de Plantas/metabolismo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
10.
Nano Lett ; 22(13): 5127-5136, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35700100

RESUMO

Carbon dots (CDs) have aroused widespread interest in the construction of room-temperature phosphorescent (RTP) materials. However, it is a great challenge to obtain simultaneous multicolor long-wavelength RTP emission and excellent stability in CD-based RTP materials. Herein, a novel and universal "CDs-in-YOHF" strategy is proposed to generate multicolor and long-wavelength RTP by confining various CDs in the Y(OH)xF3-x (YOHF) matrix. The mechanism of the triplet emission of CDs is related to the space confinement, the formation of hydrogen bonds and C-F bonds, and the electron-withdrawing fluorine atoms. Remarkably, the RTP lifetime of orange-emissive CDs-o@YOHF is the longest among the reported single-CD-matrix composites for emission above 570 nm. Furthermore, CDs-o@YOHF exhibited higher RTP performance at long wavelength in comparison to CDs-o@matrix (matrix = PVA, PU, urea, silica). The resulting CDs@YOHF shows excellent photostability, thermostability, chemical stability, and temporal stability, which is rather favorable for information security, especially in a complex environment.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Corantes Fluorescentes/química , Fluoretos , Pontos Quânticos/química , Temperatura
11.
Cancer Cell Int ; 22(1): 359, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397164

RESUMO

Glioblastoma (GBM) is the most common primary malignant tumor in the brain, and its robust proliferation and invasion abilities reduce the survival time of patients. Circular RNAs (circRNAs) play an essential role in various tumors, such as regulating tumor cell proliferation, apoptosis, invasion, metastasis, and other progressive phenotypes through different mechanisms. Finding novel circRNAs may significantly contribute to the prognosis of GBM and provide the basis for the targeted therapy of GBM. In this study, we found circPTPRF is a novel circRNA that has never been studied, which was highly expressed in GBM and is closely related to poor patient prognoses. After knockdown or overexpression in glioma cell lines (U87 and LN229) and glioma stem cells (GSCs), we identified that circPTPRF could promote proliferation, invasion, and neurospheres formation abilities of GBM via in vitro and in vivo experiments. Mechanisms, miR-1208 was confirmed as a target of circPTPRF, and miR-1208 can also target the 3'UTR of YY1, and they were proved by luciferase reporter, western blotting (WB), qPCR and RNA immunoprecipitation (RIP) assays. The following rescue experiments demonstrated that circPTPRF was a miR-1208 sponge for upregulating YY1 expression to promote proliferation, invasion and neurosphere formation abilities of GBM in vitro. In conclusion, the circPTPRF/miR-1208/YY1 axis can regulate GBM progression. CircPTPRF may play an essential role in GBM diagnosis and prognostic prediction and be an important molecular target for GBM therapy.

12.
Phys Chem Chem Phys ; 23(25): 13934-13950, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34142688

RESUMO

Photosensory receptors containing the flavin-binding light-oxygen-voltage (LOV) domain are modular proteins that fulfil a variety of biological functions ranging from gene expression to phototropism. The LOV photocycle is initiated by blue-light and involves a cascade of intermediate species, including an electronically excited triplet state, that leads to covalent bond formation between the flavin mononucleotide (FMN) chromophore and a nearby cysteine residue. Subsequent conformational changes in the polypeptide chain arise due to the remodelling of the hydrogen bond network in the cofactor binding pocket, whereby a conserved glutamine residue plays a key role in coupling FMN photochemistry with LOV photobiology. Although the dark-to-light transition of LOV photosensors has been previously addressed by spectroscopy and computational approaches, the mechanistic basis of the underlying reactions is still not well understood. Here we present a detailed computational study of three distinct LOV domains: EL222 from Erythrobacter litoralis, AsLOV2 from the second LOV domain of Avena sativa phototropin 1, and RsLOV from Rhodobacter sphaeroides LOV protein. Extended protein-chromophore models containing all known crucial residues involved in the initial steps (femtosecond-to-microsecond) of the photocycle were employed. Energies and rotational barriers were calculated for possible rotamers and tautomers of the critical glutamine side chain, which allowed us to postulate the most energetically favoured glutamine orientation for each LOV domain along the assumed reaction path. In turn, for each evolving species, infrared difference spectra were constructed and compared to experimental EL222 and AsLOV2 transient infrared spectra, the former from original work presented here and the latter from the literature. The good agreement between theory and experiment permitted the assignment of the majority of observed bands, notably the ∼1635 cm-1 transient of the adduct state to the carbonyl of the glutamine side chain after rotation. Moreover, both the energetic and spectroscopic approaches converge in suggesting a facile glutamine flip at the adduct intermediate for EL222 and more so for AsLOV2, while for RsLOV the glutamine keeps its initial configuration. Additionally, the computed infrared shifts of the glutamine and interacting residues could guide experimental research addressing early events of signal transduction in LOV proteins.


Assuntos
Glutamina/química , Sequência de Aminoácidos , Avena/química , Cisteína/química , Mononucleotídeo de Flavina/química , Ligação de Hidrogênio , Isomerismo , Modelos Moleculares , Distribuição Normal , Processos Fotoquímicos , Fototropinas/química , Ligação Proteica , Conformação Proteica , Espectrofotometria Infravermelho , Sphingomonadaceae/química , Relação Estrutura-Atividade , Termodinâmica
13.
Angew Chem Int Ed Engl ; 60(41): 22253-22259, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34390105

RESUMO

Room-temperature afterglow (RTA) materials with long lifetime have shown tremendous application prospects in many fields. However, there is no general design strategy to construct near-infrared (NIR)-excited multicolor RTA materials. Herein, we report a universal approach based on the efficient radiative energy transfer that supports the reabsorption from upconversion materials (UMs) to carbon dots-based RTA materials (CDAMs). Thus, the afterglow emission (blue, cyan, green, and orange) of various CDAMs can be activated by UMs under the NIR continuous-wave laser excitation. The efficient radiative energy transfer ensured the persistent multicolor afterglow up to 7 s, 6 s, 5 s, and 0.5 s by naked eyes, respectively. Given the unusual afterglow properties, we demonstrated preliminary applications in fingerprint recognition and information security. This work provides a new avenue for the activation of NIR-excited afterglow in CDAMs and will greatly expand the applications of RTA materials.

14.
Small ; 16(49): e2005228, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33185338

RESUMO

Carbon nanodots (CDs) anchored onto inorganic supporter (amorphous nanosilica, SiO2 ) like a core-satellite structure have enhanced the room-temperature phosphorescence (RTP) intensity along with ultralong lifetime of 1.76 s. Special and quite stable structure should account for these superiorities, including hydrogen network, covalent bond, and trap-stabilized triplet-state excitons that are responsible for the generation of phosphorescence. These multiple effects have efficaciously protected CDs from being restrained by the external environment, providing such long-lived emission (LLE) that can subsist not only in powdery CDs-SiO2 but also coexist in aqueous solution, pushing a big step forward in the application prospects of liquid-state phosphorescence. Through construction of CDs-SiO2 compound, electron trap is reasoned between CDs and SiO2 by analyzing thermoluminescent glow curve. Electron trap can capture, store, and gradually release the electrons just like an electron transporter to improve the intersystem crossing (ISC) and reserved ISC, having provided the more stabilized triplet excitons, stronger and longer phosphorescence, and also triggered the formation of thermally activated delayed fluorescence (TADF), offering a new mechanism for exploiting LLE among CD-based field. Moreover, it is more beneficial to the formation of TADF as temperature increases, thus the afterglow color can change with the temperature.

15.
Small ; 16(1): e1905266, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782905

RESUMO

Commercial white light-emitting diodes (LEDs) have the undesirable characteristics of blue-rich emission and low color rendering index (CRI), while the constituent quantum dots (QDs) suffer from aggregation-induced fluorescence quenching and poor stability. Herein, a strategy is developed to assemble tricolor QDs into a polysiloxane matrix using a polymer-mediated hybrid approach whereby the hybrid composite exhibits a significant enhancement of aggregation-dispersed emission, outstanding photostability, high thermal stability, and outstanding fluorescence recovery. Using the as-prepared hybrid fluorescent materials, the fabricated LEDs exhibit solar spectrum-simulated emission with adjustable Commission Internationale de L'Eclairage coordinates, correlated color temperature, and a recorded CRI of 97. Furthermore, they present no ultraviolet emission and weak blue emission, thus indicating an ideal healthy and high-CRI white LED lighting source.

16.
Opt Express ; 28(13): 19550-19561, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672229

RESUMO

C-dot-based composites with phosphorescence have been widely reported due to their attractive potential in various applications. But easy quenching of phosphorescence induced by oxygen or instability of matrices remained a tricky problem. Herein, we reported a Si-doped-CD (Si-CD)-based RTP materials with long lifetime by embedding Si-CDs in sulfate crystalline matrices. The resultant Si-CD@sulfate composites exhibited a long lifetime up to 1.07 s, and outstanding stability under various ambient conditions. The intriguing RTP phenomenon was attributed to the C = O bond and the doping of Si element due to the fact that sulfates could effectively stabilize the triplet states of Si-CDs, thus enabling the intersystem crossing (ISC). Meanwhile, we confirmed that the ISC process and phosphorescence emission could be effectively regulated based on the heavy atom effect. This research introduced a new perspective to develop materials with regulated RTP performance and high stability.

17.
Phys Chem Chem Phys ; 22(12): 6538-6552, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-31994556

RESUMO

Flavin mononucleotide (FMN) belongs to the large family of flavins, ubiquitous yellow-coloured biological chromophores that contain an isoalloxazine ring system. As a cofactor in flavoproteins, it is found in various enzymes and photosensory receptors, like those featuring the light-oxygen-voltage (LOV) domain. The photocycle of FMN is triggered by blue light and proceeds via a cascade of intermediate states. In this work, we have studied isolated FMN in an aqueous solution in order to elucidate the intrinsic electronic and vibrational changes of the chromophore upon excitation. The ultrafast transitions of excited FMN were monitored through the joint use of femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy encompassing a time window between 0 ps and 6 ns with 50 fs time resolution. Global analysis of the obtained transient visible absorption and transient Raman spectra in combination with extensive quantum chemistry calculations identified unambiguously the singlet and triplet FMN populations and addressed solvent dynamics effects. The good agreement between the experimental and theoretical spectra facilitated the assignment of electronic transitions and vibrations. Our results represent the first steps towards more complex experiments aimed at tracking structural changes of FMN embedded in light-inducible proteins upon photoexcitation.


Assuntos
Mononucleotídeo de Flavina/química , Processos Fotoquímicos , Análise Espectral Raman , Simulação por Computador , Mononucleotídeo de Flavina/metabolismo
18.
Mikrochim Acta ; 187(6): 347, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32458214

RESUMO

An "off-on" assay system for H2O2 determination was developed based on assembling ultra-bright fluorescent silicon quantum dots (SiQDs) and PEG-MnO2 nanosheets. Among them, SiQDs acted as fluorometric reporter, which can effectively eliminate the interference of plant pigments under excitation of 365 nm. PEG-MnO2 nanosheets played dual function of nanoquencher and H2O2 recognizer. Unlike previous reports, the quenching mechanism of SiQDs by PEG-MnO2 nanosheets is attributed to both the associative effect of inner filter effect and the static quenching effect. Thus, the fluorescence intensity of SiQDs at 445 nm decreased with increasing concentration of PEG-MnO2 nanosheets. After addition of H2O2, PEG-MnO2 nanosheets were reduced to Mn2+, consequently resulting in the recovery of the SiQDs fluorescence. Combined with these properties, an off-on fluorescent method was built for determination of H2O2 in plant leaves with high sensitivity and selectivity. The present method has two linear ranges: from 0.05 to 1 µM with a detection limit of 0.09 µM and from 1 to 80 µM with a detection limit of 4.04 µM. Graphical abstract Schematic representation of the mechanism of SiQD/PEG-MnO2 nanoprobe for determination of H2O2.


Assuntos
Corantes Fluorescentes/química , Peróxido de Hidrogênio/análise , Compostos de Manganês/química , Óxidos/química , Polietilenoglicóis/química , Pontos Quânticos/química , Fluorescência , Lactuca/química , Limite de Detecção , Folhas de Planta/química , Silício/química , Espectrometria de Fluorescência/métodos
19.
Opt Express ; 27(5): 7629-7641, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876325

RESUMO

The research and development of non-toxic, broad-spectrum and environmentally friendly ultraviolet absorbers remains no significant progress in recent years. We found that the ultraviolet absorption spectra can be regulated through modification of functional groups on carbon dots surface, and the modified carbon dots exhibiting good stability and functions of sunscreen (Sun protection actor reaches to 22) and anti-aging properties were experimentally demonstrated. Moreover, we figured out the ultraviolet absorption mechanism of carbon dots for the first time and confirmed the existence of non-fluorescent radiation energy traps. Carbon dots are expected to be widely used and commercialized as ultraviolet absorbers.

20.
Nanotechnology ; 30(15): 155601, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30625454

RESUMO

The shell/core structure of CDs@CaF2 nanocomposites (CCNCs) were prepared by assembling fluorescent carbon dots (CDs) inside the inorganic CaF2 substrates using co-precipitation interaction. CDs endow CaF2 with properties of good UV-absorbing behavior and efficient blue light emission instead of rare-earth such as Eu that is expensive and susceptible to polluting the environment during the mining process. Due to the nanometer size and surface effect of nano CaF2, and the approximate refractive index between CaF2 and polyethylene (PE), CCNC/PE film exhibits better elongation at the break than pure PE film while maintaining high transparency and visible light transmittance. Simultaneously, the CCNC/PE film was experimentally demonstrated to have outstanding performance of anti-UV and blue light conversion, which shows that CCNCs can be a novel and promising multifunctional additive applied in polymers especially for greenhouse film.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa