RESUMO
[This corrects the article DOI: 10.1371/journal.pgen.1004749.].
RESUMO
Functional fibers composed of textiles are considered a promising platform for constructing electronic skin (e-skin). However, developing robust electronic fibers with integrated multiple functions remains a formidable task especially when a complex service environment is concerned. In this work, a continuous and controllable strategy is demonstrated to prepare e-skin-oriented ceramic fibers via coaxial wet spinning followed by cold isostatic pressing. The resulting core-shell structured fiber with tightly compacted Al-doped ZnO nanoparticles in the core and highly ordered aramid nanofibers in the shell exhibit excellent tensile strength (316 MPa) with ultra-high elongation (33%). Benefiting from the susceptible contacts between conducting ceramic nanoparticles, the ceramic fiber shows both ultrahigh sensitivity (gauge factor = 2141) as a strain sensor and a broad working range up to 70 °C as a temperature sensor. Furthermore, the tunable core-shell structure of the fiber enables the optimization of impedance matching and attenuation of electromagnetic waves for the corresponding textile, resulting in a minimum reflection loss of -39.1 dB and an effective absorption bandwidth covering the whole X-band. Therefore, the versatile core-shell ceramic fiber-derived textile can serve as a stealth e-skin for monitoring the motion and temperature of robots under harsh conditions.
RESUMO
Sepsis-induced myocardial depression (SIMD) is common in pediatric intensive care units and seriously threatens children's health. Recently, long noncoding RNAs (lncRNAs) have been showed to play important roles in various diseases; however, its role in SIMD is unclear. In this study, we used lipopolysaccharide (LPS)-treated rats and H9c2 cardiomyocytes to mimic SIMD in vivo and in vitro. We found that the expression of a novel lncRNA, we named lncRNA-AABR07066529.3, was elevated in LPS-induced rat heart tissue and H9c2 cardiomyocytes. In addition, LPS-induced inflammation, apoptosis, and pyroptosis were significantly exacerbated after lncRNA-AABR07066529.3 knockdown. Moreover, we found that myeloid differentiation factor 88 (MyD88) was upregulated in LPS-treated groups and was inhibited by lncRNA-AABR07066529.3. Besides, MyD88 knockdown abolished lncRNA-AABR07066529.3 silencing effects on inflammation, apoptosis, and pyroptosis induced by LPS in H9c2 cardiomyocytes. In our study, we found lncRNA-AABR07066529.3 exerted protective effects on LPS-induced cardiomyocytes by regulating MyD88 and might serve as a potential treatment target for SIMD.
Assuntos
Cardiomiopatias , MicroRNAs , RNA Longo não Codificante , Animais , Ratos , Apoptose , Cardiomiopatias/metabolismo , Depressão , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Uncontrolled diabetes causes a catabolic state with multi-organic complications, of which impairment on skeletal muscle contributes to the damaged mobility. Kcnma1 gene encodes the pore-forming α-subunit of Ca2+ - and voltage-gated K+ channels of large conductance (BK channels), and loss-of-function mutations in Kcnma1 are in regards to impaired myogenesis. Herein, we observed a time-course reduction of Kcnma1 expression in the tibialis anterior muscles of leptin receptor-deficient (db/db) diabetic mice. To investigate the role of Kcnma1 in diabetic muscle atrophy, muscle-specific knockdown of Kcnma1 was achieved by mice receiving intravenous injection of adeno-associated virus-9 (AAV9)-encoding shRNA against Kcnma1 under the muscle creatine kinase (MCK) promoter. Impairment on muscle mass and myogenesis were observed in m/m mice with AAV9-shKcnma1 intervention, while this impairment was more obvious in diabetic db/db mice. Simultaneously, damaged mitochondrial dynamics and biogenesis showed much severer in db/db mice with AAV9-shKcnma1 intervention. RNA sequencing revealed the large transcriptomic changes resulted by Kcnma1 knockdown, and changes in mitochondrial homeostasis-related genes were validated. Besides, the artificial alteration of Kcnma1 in mouse C2C12 myoblasts was achieved with an adenovirus vector. Consistent results were demonstrated by Kcnma1 knockdown in palmitate-treated cells, whereas opposite results were exhibited by Kcnma1 overexpression. Collectively, we document Kcnma1 as a potential keeper of mitochondrial homeostasis, and the loss of Kcnma1 is a critical event in priming skeletal muscle loss in diabetes.
Assuntos
Diabetes Mellitus Experimental , Canais de Potássio Ativados por Cálcio de Condutância Alta , Camundongos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , HomeostaseRESUMO
BACKGROUND: A lower adherence rate existed in patients receiving allergen-specific immunotherapy due to its lengthy period and adverse effects even though it is the only curative treatment for IgE-mediated allergies. Therefore, exploring innovative allergen-specific immunotherapy routes is necessary. OBJECTIVE: To explore the efficacy and safety of the intratonsillar injection of house dust mite (HDM) extract in patients with HDM-induced allergic rhinitis (AR). METHODS: A randomized, double-blind, placebo-controlled clinical trial was conducted. A total of 80 patients with HDM-induced AR were randomized to receive 6 intratonsillar injections with HDM extract or placebo in 3 months. The total nasal symptom score (TNSS), visual analogue scale of nasal symptoms, combined symptom and medication score, mini rhinoconjunctivitis quality of life questionnaire, and serum allergen-specific IgG4 to Dermatophagoides pteronyssinus were all monitored at baseline and 3 months, 6 months, and 12 months after the treatment was finished. The intent-to-treat and per-protocol set (PPS) are both analyzed. RESULTS: The primary end points TNSS and ΔTNSS were improved significantly at 3 months after the patients with AR finished a 3-month 6-injection intratonsillar immunotherapy compared with those in the placebo treatment in both intent-to-treat and PPS. Results of visual analogue scale, combined symptom and medication score, and mini rhinoconjunctivitis quality of life questionnaire were also improved significantly at 3 months after the treatment in PPS. However, the improvement effect of intratonsillar immunotherapy at 6 and 12 months was limited and uncertain based on the data. The increase of serum Der p IgG4 in the active group was significantly higher than that in the placebo group at 3, 6, and 12 months after the treatment was finished. Adverse events were monitored, and no systemic adverse reactions were observed. CONCLUSION: The clinical trial revealed that intratonsillar injection with HDM extract was safe and effective in patients with AR. Optimizing the protocol and allergen formulations is expected to increase and maintain the efficacy of this novel approach. TRIAL REGISTRATION: https://www.chictr.org.cn/index.html, identifier: ChiCTR-TRC-13003600.
Assuntos
Conjuntivite , Rinite Alérgica Perene , Rinite Alérgica , Imunoterapia Sublingual , Animais , Humanos , Qualidade de Vida , Pyroglyphidae , Imunoterapia Sublingual/métodos , Resultado do Tratamento , Antígenos de Dermatophagoides , Alérgenos , Rinite Alérgica Perene/tratamento farmacológico , Método Duplo-Cego , Conjuntivite/etiologia , Imunoglobulina GRESUMO
Olefin industry as a vital part in economic development is facing a problem of high CO2 emission. In this work, for the global and China's olefin industry under different development scenario, the carbon emission is predicted after the revealing of carbon footprint in different olefin routes. The results show that the carbon footprint of the natural gas liquids (NGLs)-derived route is highly lower than that of the oil- and coal-derived routes. The carbon emission from the global olefin industry in 2015 is 553 million ton CO2 (MtCO2). In 2030, it will be ranged between 739 and 924 MtCO2 under different scenarios. Under sustainable development scenario, 15% reduction space is existed, whereas 6% growth is observed under the hybrid-development scenario compared to the business-as-usual situation. In the case of China, its carbon emission is 120 MtCO2 in 2015. Its potential carbon emission in 2030 will increase to 264-925 MtCO2, depending on the rest new capacity from low-carbon or high-carbon routes. The large gap implies the significant influence of the development route choice. However, if most new capacity is from the existed planned olefin projects, the carbon emission will be ranged between 390 and 594 MtCO2. Finally, the low-carbon roadmaps as well as polices are proposed for sustainable development of olefin industry.
Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/análise , Carbono/análise , Alcenos , Carvão Mineral , Gás Natural , China , Desenvolvimento EconômicoRESUMO
Prenatal environmental exposure could be an essential health risk factor associated with neurodevelopmental disorders in offspring. However, the exact mechanisms underlying the impact of prenatal PM2.5 exposure on offspring cognition remain unclear. In our recent study using a PM2.5 exposed pregnant mouse model, we observed significant synaptic dysfunction in the hippocampi of the offspring. Concurrently, the epigenetic regulator of KDM5A and the Shh signaling pathway exhibited decreased activities. Significantly, changes in hippocampal KDM5A and Shh levels directly correlated with PM2.5 exposure intensity. Subsequent experiments revealed a marked reduction in the expression of Shh signaling and related synaptic proteins when KDM5A was silenced in cells. Notably, the effects of KDM5A deficiency were reversed significantly with the supplementation of a Shh activator. Furthermore, our findings indicate that Shh activation significantly attenuates PM2.5-induced synaptic impairments in hippocampal neurons. We further demonstrated that EGR1, a transcriptional inhibitor, plays a direct role in KDM5A's regulation of the Shh pathway under conditions of PM2.5 exposure. Our results suggest that the KDM5A's inhibitory regulation on the Shh pathway through the EGR1 gene is a crucial epigenetic mechanism underlying the synaptic dysfunction in hippocampal neurons caused by maternal PM2.5 exposure. This emphasizes the role of epigenetic regulations in neurodevelopmental disorders caused by environmental factors.
Assuntos
Epigênese Genética , Proteínas Hedgehog , Hipocampo , Material Particulado , Efeitos Tardios da Exposição Pré-Natal , Transdução de Sinais , Hipocampo/efeitos dos fármacos , Animais , Feminino , Gravidez , Transdução de Sinais/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Material Particulado/toxicidade , Proteína 2 de Ligação ao Retinoblastoma/genética , Exposição Materna/efeitos adversos , Sinapses/efeitos dos fármacos , Poluentes Atmosféricos/toxicidadeRESUMO
Thyroid cancer (THCA) is a common head and neck malignancy. The family with sequence similarity 3 (FAM3) is a cytokine-like gene family with four members, which is presumed to participate in the development of many cancer types. However, the expression patterns of FAM3s in THCA and their prognostic values, have not yet been established. We investigated differential expressions of FAM3 mRNA and protein in THCA, then validated the findings for FAM3B by immunohistochemistry. We also investigated survival data with respect to FAM3 expression patterns in patients with THCA. FAM3s information regarding their relationships with clinical pathological parameters were obtained and FAM3 mutations were assessed. KEGG and GO pathway regarding FAM3C were obtained using online databases. To investigate potential correlations between FAM3s and immune cell infiltration, we investigated the roles of FAM3s in immune cells of patients with THCA. The mRNA expression of FAM3C were significantly elevated in THCA tissues; high expression levels of FAM3C protein were also observed in THCA tissues. A significant association between the pathological stage and the expression of FAM3C was found in patients with THCA. Patients with THCA who had high mRNA expression levels of FAM3C exhibited significantly more favorable prognosis, compared with patients who had low mRNA expression levels of FAM3C. Overall, FAM3C may play vital roles in the pathogenesis and development of THCA, and these findings constitute novel insights for biomarkers of immunotherapeutic targeted agents and may aid in the identification of prognostic biomarkers for THCA.
Assuntos
Proteínas de Neoplasias , Neoplasias da Glândula Tireoide , Humanos , Proteínas de Neoplasias/genética , Citocinas/metabolismo , Neoplasias da Glândula Tireoide/genética , RNA Mensageiro/genéticaRESUMO
BACKGROUND: Spinal astrocytes contribute to chronic itch via sensitization of itch-specific neurons expressing gastrin-releasing peptide receptor (GRPR). However, whether microglia-neuron interactions contribute to itch remains unclear. In this study, we aimed to explore how microglia interact with GRPR+ neurons and promote chronic itch. METHODS: RNA sequencing, quantitative real-time PCR, western blot, immunohistochemistry, RNAscope ISH, pharmacologic and genetic approaches were performed to examine the roles of spinal NLRP3 (The NOD-like receptor family, pyrin-containing domain 3) inflammasome activation and IL-1ß-IL1R1 signaling in chronic itch. Grpr-eGFP and Grpr KO mice were used to investigate microglia-GRPR+ neuron interactions. RESULTS: We observed NLRP3 inflammasome activation and IL-1ß production in spinal microglia under chronic itch conditions. Blockade of microglial activation and the NLRP3/caspase-1/IL-1ß axis attenuated chronic itch and neuronal activation. Type 1 IL-1 receptor (IL-1R1) was expressed in GRPR+ neurons, which are essential for the development of chronic itch. Our studies also find that IL-1ß+ microglia are localized in close proximity to GRPR+ neurons. Consistently, intrathecal injection of IL1R1 antagonist or exogenous IL-1ß indicate that the IL-1ß-IL-1R1 signaling pathway enhanced the activation of GRPR+ neurons. Furthermore, our results demonstrate that the microglial NLRP3/caspase-1/IL-1ß axis contributes to several different chronic itches triggered by small molecules and protein allergens from the environment and drugs. CONCLUSION: Our findings reveal a previously unknown mechanism in which microglia enhances the activation of GRPR+ neurons through the NLRP3/caspase-1/IL-1ß/IL1R1 axis. These results will provide new insights into the pathophysiology of pruritus and novel therapeutic strategies for patients with chronic itch.
Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microglia/metabolismo , Receptores da Bombesina/metabolismo , Prurido/genética , Prurido/metabolismo , Doença Crônica , Interleucina-1beta/metabolismo , Neurônios/metabolismo , Caspases , Camundongos Endogâmicos C57BLRESUMO
Indoor air quality (IAQ) is an important parameter in protecting the occupants of an indoor environment. Previous studies have shown that an indoor environment with poor ventilation increases airborne virus transmission. Existing research has concluded that high ventilation rates can reduce the risk of individuals in indoor environments being infected. However, most existing ventilation systems are designed to be efficient under non-pandemic conditions. Ultimately, indoor environments will become hotspots for the transmission of airborne viruses. Current infection risk assessments can estimate virus transmission via airborne routes, but with limited information sharing among stakeholders. Our own research did not identify any systems that integrate risk assessments with smart sensors in order to support information sharing with experts in indoor environments in their decision-making process. To fill this gap, we designed a blockchain-based prototype (AIRa) that integrates CO2 smart sensor data with infection risk assessments from a post-pandemic perspective. This system generates two types of alerts: (1) P-Alert and (2) R0-Alert for decision-making by building owners, such as increasing the ventilation rate or track and trace, as needed. AIRa shows various benefits over three existing infection-control alert systems. Our solution stores and shares information such as the timestamp and room number, instead of storing building user's personal information. Our approach does not require a QR code to be scanned or a mobile app to be downloaded in order to enable track and trace. However, AIRa is still an early prototype for evaluating the risks of airborne virus transmission in smart building environments. Multidisciplinary knowledge and technological research will be vital in formulating different alerts in the future.
Assuntos
Poluição do Ar em Ambientes Fechados , Blockchain , Humanos , Ventilação , Ar Condicionado , Medição de RiscoRESUMO
To improve the utilization value of raspberry leaves, the extraction and purification conditions of phenolic compounds from raspberry leaves were optimized, and the contents of phenolic compounds and the biological activities of extracts were studied. After steam explosion pretreatment at 115 °C for 15 min, raspberry leaf extract with a total phenolic content (TPC) of 136.30~140.51 mg GAE/g was obtained via homogenization and ultrasound-assisted extraction. In addition, the adsorption relationship between raspberry leaf polyphenols and middle polar XDA-6 macroporous resin was best described by the Langmuir model, and tended to be monolayer adsorption. Its adsorption kinetics best resembled the pseudo second-order kinetic model, and it was speculated that this was influenced by multiple factors. According to the optimal integrated extraction-purification process, the TPC of the extracts increased to 738.98 mg GAE/g after one application of purification and 905.27 mg GAE/g after two applications of purification. Moreover, the latter case showed the highest antioxidant activity and α-glucosidase inhibition activity, and the content of the most typical compound, quercetin-3-glucuronide, reached 199.69 mg/g. SE has a double-edged effect, and is more conducive to the release of active substances as a pre-treatment method. This study provides a theoretical basis for the efficient use of raspberry leaves, further improving their medicinal and economic value.
Assuntos
Polifenóis , Rubus , Polifenóis/farmacologia , Fenóis , Adsorção , Extratos Vegetais/farmacologiaRESUMO
Air pollution is a global public health concern, and numerous studies have attempted to identify the health effects of air pollutants, including nitrogen dioxide (NO2). In China, there are few studies investigating the relationship between NO2 exposure and symptoms among children at an individual level. The aim of the study was to evaluate the acute effects of NO2 on prevalence of symptoms of primary students. An environmental and health questionnaire survey was administered to 4240 primary students in seven districts of Shanghai. Daily symptoms, as well as the daily air pollution and meteorological data from each community, were recorded during the corresponding period. A multivariable logistic regression model was utilized to analyze the relationship between the prevalence of symptoms and NO2 exposure in school-age children. A model with interaction items was adopted to estimate the interactive effects of NO2 and confounding factors on symptoms. The average NO2 level in central urban, industrial and rural areas were 62.07 ± 21.66, 54.86 ± 18.32 and 36.62 ± 21.23 µg m-3, respectively. Our findings demonstrate that the occurrence of symptoms was significantly affected by NO2 exposure in the short-term. The largest associations were observed for a 10 µg m-3 increase in 5-day moving average (lag04) NO2 concentration with prevalence of general symptoms (odds ratio [OR] = 1.15, 95% confidence interval [95% CI]: 1.07-1.22), throat symptoms (OR = 1.23, 95% CI: 1.13-1.35) and nasal symptoms (OR = 1.142, 95% CI: 1.02-1.27). Subgroup analysis showed that non-rural areas, boys, nearby environmental pollution source and history of present illness were all susceptible factors to the effects of NO2 exposure. Furthermore, there were interactive effects between NO2 exposure and area types on reported symptoms. NO2 can increase the risk of symptoms in primary students in the short-term, which could be significantly enhanced in central urban and industrial areas.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Masculino , Criança , Humanos , Dióxido de Nitrogênio/toxicidade , Dióxido de Nitrogênio/análise , Prevalência , China/epidemiologia , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudantes , Exposição Ambiental/análise , Material Particulado/análiseRESUMO
Neuroinflammation is a key mechanism underlying the cognitive impairment induced by PM2.5, and activated microglia plays an important role in this process. However, the mechanisms by which activated microglia induced by PM2.5 impair hippocampal neurons have not been fully elucidated. In this study, we focused on the role of HMGB1-NLRP3-P2X7R pathway which mediated the microglia activation in hippocampal neurons impairment induced by PM2.5 using a co-culture model of microglia and hippocampal neurons. We found that PM2.5 resulted in activated microglia and HMGB1-NLRP3 inflammatory pathway, and elevated proinflammatory cytokines of IL-18 and IL-1ß in a dose-dependent manner. Notably, we next utilized previously reported pharmacological inhibitors or siRNA for HMGB1 and found that they significantly inhibited the activation of downstream NLRP3 and MAPK pathways derived from PM2.5 exposure, and down-regulated IL-18 and IL-1ß in microglia. Furthermore, we employed co-cultured hippocampal neurons and microglia and found that reducing HMGB1 significantly decreased neuron impairment, apoptosis related protein of cl-caspase3, synaptic damage, and neurotransmitter receptor of 5-HT2A, along with notably elevated presynaptic and postsynaptic proteins of SYP and PSD-95, as well as learning and memory related proteins of p-CREB and BDNF. The neuronal impairment induced by PM2.5 could not be prevented in the case of simultaneous employment of HMGB1 siRNA and NLRP3 agonist. After silencing NLRP3 alone in microglia, hippocampal neurons demonstrated decreased excessive autophagy and up-regulated synaptic protein of GAP43 as well as learning and memory related protein of NCAM1. Therefore, we further studied how hippocampal neurons affected microglia under PM2.5 exposure, Further investigation indicated that silencing HMGB1 could affect the activation of P2X7R and reduce the release of ATP from hippocampal neurons, thus protecting the interaction between microglia and hippocampal neurons. The present work suggests that regulation of HMGB1-NLRP3-P2X7R pathway can inhibit the microglia activation induced by PM2.5 to alleviate hippocampal neuron impairment and stabilize the microenvironment between microglia and neurons. This contributes to maintaining the normal function of hippocampal neurons and alleviating the cognitive impairment derived from PM2.5 exposure.
Assuntos
Proteína HMGB1 , Receptores Purinérgicos P2X7 , Animais , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Hipocampo/metabolismo , Interleucina-18/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismoRESUMO
OBJECTIVE: To explore the prognostic value of MMP-16 expression in patients with serous ovarian cancer and the usefulness of MMP-16 expression to predict sensitivity to chemoradiotherapy. METHODS: The relationship between MMP-16 expression and clinicopathological parameters of serous ovarian cancer was evaluated in The Cancer Genome Atlas (TCGA) database. Cox proportional hazard regression analysis was performed to measure the prognostic significance of MMP-16 in serous ovarian cancer. Dataset GSE51373 was applied to estimate the difference of MMP-16 expression between chemotherapy-sensitive group and resistant group of serous ovarian cancer. Receiver operating characteristic (ROC) curve was also drawn. In addition, the online tool Kaplan-Meier Plotter was used to assess the prognostic value of MMP-16 in patients with serous ovarian cancer. RESULTS: A total of 235 patients with serous ovarian cancer were included in the TCGA database. Cox regression univariate analysis showed that high expression of MMP-16 was not conducive to the overall survival of patients with serous ovarian cancer (hazard ratio [HR] = 1.47, 95% CI: 1.03~2.08; P < 0.05). The results of Cox regression multivariate analysis also demonstrated that there was a statistically significant difference. The results of the online database Kaplan-Meier Plotter analysis showed that the high expression of MMP-16 was not conducive to the progression-free survival (PFS) of patients with serous ovarian cancer (HR = 1.26, 95% CI: 1.06~1.29; P < 0.05). The expression of MMP-16 in the chemotherapy-sensitive group was notably lower than that in the chemotherapy-resistant group, which had a moderate predictive value in predicting the chemosensitivity of serous ovarian cancer (AUC = 0.7187). CONCLUSION: High expression of MMP-16 is not conducive to chemotherapy sensitivity and survival of patients with serous ovarian cancer, and has predictive value for chemotherapy resistance and prognosis.
Assuntos
Biomarcadores Tumorais , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/metabolismo , Metaloproteinase 16 da Matriz/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Idoso , Carcinoma Epitelial do Ovário/terapia , Quimiorradioterapia , Biologia Computacional , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Neoplasias Ovarianas/terapia , Prognóstico , Curva ROC , Análise de SobrevidaRESUMO
It has been reported that cyclin-dependent kinase like 3 (CDKL3) plays a crucial role in cell proliferation and migration in several cancers. However, the function of CDKL3 in triple-negative breast cancer (TNBC) is still unclear. In the present study, immunohistochemistry (IHC) was conducted to detect the CDKL3 expression. CCK-8, flow cytometry, Transwell assays, and mice xenograft models, were performed to explore the roles of CDKL3 on the proliferation and migration of TNBC in vitro and in vivo. Besides, protein chip analysis was used to screen the potential pathways, which was further confirmed by promoter activity assay, western blotting, and CCK-8 assay. Our findings reveal a high expression of CDKL3 in TNBC tissues, which is closely related to a poor prognosis of patients with TNBC. In TNBC cells, CDKL3 knockdown inhibits cell proliferation and migration, whereas CDKL3 overexpression has exactly the opposite effect. Consistently, CDKL3 knockdown induces cell apoptosis in vitro but suppresses tumor growth in vivo. Furthermore, CDKL3 knockdown increases p53 expression and reduces cell viability, and these effects are significantly weakened by the p53 inhibitor, PFT-α. In conclusion, the current study highlights that CDKL3 promotes TNBC progressions via regulating the p53 signaling pathway, suggesting that CDKL3 is a novel therapeutic target for TNBC treatment.
Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
Liraglutide, a glucagon-like peptide 1 (GLP-1) analogue, could reverse NAFLD-induced liver damage by improving metabolic profiles, but the exact molecular mechanism has not been elucidated. Sestrin2 is a novel antioxidant protein, essential for regulating metabolic homeostasis. However, whether sestrin2-mediated redox balance participated in the protective effects of liraglutide against NAFLD is still elusive. The aim of the study was to determine whether liraglutide could ameliorate NAFLD by increasing Sestrin2-mediated signaling in obese mice. Following a normal diet or high fat diet (HFD) for 8 weeks, male C57BL/6 mice were treated with or without liraglutide for 4 weeks. Function and histopathology of liver were conducted to evaluate liver injury. Sestrin2-related AMPK and Nrf2/HO-1 pathway were examined. Antioxidative and inflammatory genes and were determined. HFD mice displayed significantly increased body weight, fat mass, lipids levels and impaired glucose homeostasis with reduced glucose tolerance and insulin sensitivity. Metabolic profiles, hepatic injury, and hepatic lipid accumulation from HFD mice were improved by liraglutide treatment. Liraglutide enhanced Sestrin2, phosphorylated AMPK, Nrf2, and HO-1 protein levels. Additionally, Liraglutide treatment increased mRNA levels of Sestrin2, Nrf2, HO-1 and down-stream genes catalase, GCLM and NQO1, but reduced malondialdehyde and TNF-α levels. Our findings indicated that liraglutide ameliorated obesity-related NAFLD through upregulating Sestrin2-mediated Nrf2/HO-1 pathway.
Assuntos
Heme Oxigenase-1/metabolismo , Liraglutida/farmacologia , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/complicações , Peroxidases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Fibrose , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Peroxidases/genéticaRESUMO
BACKGROUND: The CACNA1C gene was defined as a risk gene for schizophrenia in a large genome-wide association study of European ancestry performed by the Psychiatric Genomics Consortium. Previous meta-analyses focused on the association between the CACNA1C gene rs1006737 and schizophrenia. The present study focused on whether there was an ancestral difference in the effect of the CACNA1C gene rs1006737 on schizophrenia. rs2007044 and rs4765905 were analyzed for their effect on the risk of schizophrenia. METHODS: Pooled, subgroup, sensitivity, and publication bias analysis were conducted. RESULTS: A total of 18 studies met the inclusion criteria, including fourteen rs1006737 studies (15,213 cases, 19,412 controls), three rs2007044 studies (6007 cases, 6518 controls), and two rs4765905 studies (2435 cases, 2639 controls). An allele model study also related rs2007044 and rs4765905 to schizophrenia. The overall meta-analysis for rs1006737, which included the allele contrast, dominant, recessive, codominance, and complete overdominance models, showed significant differences between rs1006737 and schizophrenia. However, the ancestral-based subgroup analysis for rs1006737 found that the genotypes GG and GG + GA were only protective factors for schizophrenia in Europeans. In contrast, the rs1006737 GA genotype only reduced the risk of schizophrenia in Asians. CONCLUSIONS: Rs1006737, rs2007044, and rs4765905 of the CACNA1C gene were associated with susceptibility to schizophrenia. However, the influence model for rs1006737 on schizophrenia in Asians and Europeans demonstrated both similarities and differences between the two ancestors.
Assuntos
Canais de Cálcio Tipo L/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Adulto , Alelos , Feminino , Frequência do Gene/genética , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Viés de Publicação , Fatores de Risco , Adulto JovemRESUMO
Obesity-related kidney disease is associated with generalized endothelial dysfunction. Liraglutide, a glucagon-like peptide-1 agonist, has cardiovascular-renal protective effects in patients with diabetes. In this study, the ability of liraglutide to reduce urinary albumin excretion by alleviating glomerular vascular endothelial growth factor-nitric oxide (VEGF-NO) axis uncoupling was assessed in high fat diet-induced obese mice. C57BL/6J mice were divided into control and obesity groups, treated with or without liraglutide (200 µg/kg/day). Blood biochemistry and urinary albumin excretion were measured. Glomerular VEGF and the AMPK-endothelial nitric oxide synthase (eNOS) pathway were assayed by western blotting. Glomerular NO, renal haeme oxygenase-1 activity, and malondialdehyde levels were also measured. Treatment of obese mice with liraglutide led to significant reductions in body weight gain (46 ± 1 g vs 55 ± 1 g, P < .0001), visceral fat (8.9 ± 0.6 g vs 14.5 ± 0.6 g, P < .0001), perirenal fat (2.9 ± 0.2 g vs 5.4 ± 0.3 g, P < .0001), and free fatty acid (1.71 ± 0.12 mmol/L vs 1.02 ± 0.08 mmol/L, P < .0001). Liraglutide significantly improved glucose homeostasis, which was impaired in obese mice. Liraglutide reduced urinary albumin excretion and glomerular hypertrophy in obese mice. Additionally, liraglutide significantly decreased VEGF and increased glomerular NO production in glomeruli, indicating restoration of the glomerular VEGF-NO axis. Furthermore, liraglutide activated the glomerular AMPK-eNOS pathway in obese mice, upregulated renal haeme oxygenase-1 activity, and reduced the renal malondialdehyde levels in obese mice. In conclusion, liraglutide reduced microalbuminuria and ameliorated renal injury by alleviating the uncoupling of the glomerular VEGF-NO axis.
Assuntos
Liraglutida , Óxido Nítrico , Fator A de Crescimento do Endotélio Vascular , Animais , Glomérulos Renais , Masculino , Camundongos , Camundongos Obesos , Óxido Nítrico Sintase Tipo IIIRESUMO
BACKGROUND: Schizophrenia is a severe neurodevelopmental disorder with a complex genetic and environmental etiology. Abnormal glutamate ionotropic N-methyl-D-aspartate receptor (NMDA) type subunit 1 (NR1) may be a potential cause of schizophrenia. METHODS: We conducted a case-control study to investigate the association between the GRIN1 gene, which encodes the NR1 subunit, and the risk of schizophrenia in a northern Chinese Han population using Sanger DNA sequencing. The dual luciferase reporter assay was used to detect the influence of two different haplotypes on GRIN1 gene expression. RESULTS: Seven SNPs (single nucleotide polymorphisms), including rs112421622 (- 2019 T/C), rs138961287 (- 1962--1961insT), rs117783907 (-1945G/T), rs181682830 (-1934G/A), rs7032504 (-1742C/T), rs144123109 (-1140G/A), and rs11146020 (-855G/C) were detected in the study population. Rs117783907 (-1945G/T) was associated with the occurrence of schizophrenia as a protective factor. The genotype frequencies of rs138961287 (- 1962--1961insT) and rs11146020 (-855G/C) were statistically different between cases and controls (p < 0.0083). The other four variations were not shown to be associated with the disease. Two haplotypes were composed of the seven SNPs, and distribution of T-del-G-G-C-G-G was significantly different between the case and control groups. However, the dual luciferase reporter assay showed that neither of the haplotypes affected luciferase expression in HEK-293 and SK-N-SH cell lines. CONCLUSIONS: The GRIN1 gene may be related to the occurrence of schizophrenia. Additional research will be needed to fully ascertain the role of GRIN1 in the etiology of schizophrenia.
Assuntos
Povo Asiático/etnologia , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética , Análise de Sequência de DNA/métodos , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Elementos Reguladores de Transcrição , Esquizofrenia/etnologiaRESUMO
An efficient metal-free method for the synthesis of organophosphorus compounds via oxidative cross dehydrogenative coupling of benzylic C(sp3)-H bonds in methylarenes with P(O)-OH compounds catalysed by cetyltrimethyl ammonium bromide (CTAB) is reported. Various methylarenes and P(O)-OH compounds are tolerated in the reaction with moderate to good yields. Compared to previous studies, the present study extends the substrate scope and adopts a new reaction system of an ammonium salt catalyst (CTAB) and an oxidant (DTBP). The results of control and mechanistic experiments are generally in agreement with the overall proposed pathway. This method circumvents the use of toxic P-halogen reagents and P(O)-H compounds for the synthesis of organophosphorus compounds.