Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Exp Cell Res ; 440(1): 114127, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857839

RESUMO

CCAAT enhancer binding protein delta (CEBPD) is a transcription factor and plays an important role in apoptosis and oxidative stress, which are the main pathogenesis of ischemic stroke. However, whether CEBPD regulates ischemic stroke through targeting apoptosis and oxidative stress is unclear. Therefore, to answer this question, rat middle cerebral artery occlusion (MCAO) reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) primary cortical neuron were established to mimic ischemic reperfusion injury. We found that CEBPD was upregulated and accompanied with increased neurological deficit scores and infarct size, and decreased neuron in MCAO rats. The siRNA targeted CEBPD inhibited CEBPD expression in rats, and meanwhile lentivirus system was used to blocked CEBPD expression in primary neuron. CEBPD degeneration decreased neurological deficit scores, infarct size and brain water content of MCAO rats. Knockdown of CEBPD enhanced cell viability and reduced apoptosis as well as oxidative stress in vivo and in vitro. CEBPD silencing promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the expression of heme oxygenase 1 (HO-1). Newly, CEBPD facilitated the transcription of cullin 3 (CUL3), which intensified ischemic stroke through Nrf2/HO-1 pathway that was proposed by our team in the past. In conclusion, targeting CEBPD-CUL3-Nrf2/HO-1 axis may be contributed to cerebral ischemia therapy.


Assuntos
Apoptose , Heme Oxigenase-1 , AVC Isquêmico , Fator 2 Relacionado a NF-E2 , Neurônios , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Neurônios/metabolismo , Neurônios/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Ratos , Masculino , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Transdução de Sinais , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Heme Oxigenase (Desciclizante)
2.
J Neuroinflammation ; 21(1): 10, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178152

RESUMO

Myasthenia gravis is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. However, some patients also experience autonomic dysfunction, anxiety, depression, and other neurological symptoms, suggesting the complex nature of the neurological manifestations. With the aim of explaining the symptoms related to the central nervous system, we utilized a rat model to investigate the impact of dopamine signaling in the central nervous and peripheral circulation. We adopted several screening methods, including western blot, quantitative PCR, mass spectrum technique, immunohistochemistry, immunofluorescence staining, and flow cytometry. In this study, we observed increased and activated dopamine signaling in both the central nervous system and peripheral circulation of myasthenia gravis rats. Furthermore, changes in the expression of two key molecules, Claudin5 and CD31, in endothelial cells of the blood-brain barrier were also examined in these rats. We also confirmed that dopamine incubation reduced the expression of ZO1, Claudin5, and CD31 in endothelial cells by inhibiting the Wnt/ß-catenin signaling pathway. Overall, this study provides novel evidence suggesting that pathologically elevated dopamine in both the central nervous and peripheral circulation of myasthenia gravis rats impair brain-blood barrier integrity by inhibiting junction protein expression in brain microvascular endothelial cells through the Wnt/ß-catenin pathway.


Assuntos
Dopamina , Miastenia Gravis , Humanos , Ratos , Animais , Dopamina/metabolismo , Células Endoteliais/metabolismo , Encéfalo , Barreira Hematoencefálica/metabolismo , Via de Sinalização Wnt/fisiologia , Miastenia Gravis/metabolismo
3.
Langmuir ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957955

RESUMO

The antifouling properties of conductive polymers have received extensive attention for biosensor and bioelectronic applications. Polyethylene glycol (PEG) is a well-known antifouling material, but the controlled regulation of the surface topography of PEG without a template remains a challenge. Here, we show a columnar structure antifouling conductive polymer brush with enhanced antifouling properties and considerable conductivity. The method involves synthesizing the 3,4-ethylenedioxythiophene monomer modified with azide (EDOT-N3), the electropolymerization of PEDOT-N3, and the in situ growth of PEG polymer brushes on PEDOT through double-click reactions. The resultant columnar structure polymer brush exhibits high electrical conductivity (3.5 Ω·cm2), ultrahigh antifouling property, electrochemical stability (capacitance retention was 93.8% after 2000 cycles of CV scans in serum), and biocompatibility.

4.
Acta Radiol ; 65(6): 535-545, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489805

RESUMO

BACKGROUND: Transcatheter arterial chemoembolization (TACE) is a mainstay treatment for intermediate and advanced hepatocellular carcinoma (HCC), with the potential to enhance patient survival. Preoperative prediction of postoperative response to TACE in patients with HCC is crucial. PURPOSE: To develop a deep neural network (DNN)-based nomogram for the non-invasive and precise prediction of TACE response in patients with HCC. MATERIAL AND METHODS: We retrospectively collected clinical and imaging data from 110 patients with HCC who underwent TACE surgery. Radiomics features were extracted from specific imaging methods. We employed conventional machine-learning algorithms and a DNN-based model to construct predictive probabilities (RScore). Logistic regression helped identify independent clinical risk factors, which were integrated with RScore to create a nomogram. We evaluated diagnostic performance using various metrics. RESULTS: Among the radiomics models, the DNN_LASSO-based one demonstrated the highest predictive accuracy (area under the curve [AUC] = 0.847, sensitivity = 0.892, specificity = 0.791). Peritumoral enhancement and alkaline phosphatase were identified as independent risk factors. Combining RScore with these clinical factors, a DNN-based nomogram exhibited superior predictive performance (AUC = 0.871, sensitivity = 0.844, specificity = 0.873). CONCLUSION: In this study, we successfully developed a deep learning-based nomogram that can noninvasively and accurately predict TACE response in patients with HCC, offering significant potential for improving the clinical management of HCC.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Redes Neurais de Computação , Nomogramas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/diagnóstico por imagem , Quimioembolização Terapêutica/métodos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Adulto , Tomografia Computadorizada por Raios X/métodos , Aprendizado Profundo , Radiômica
5.
Clin Exp Ophthalmol ; 52(5): 576-588, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38553944

RESUMO

Dry eye disease (DED) is a widespread, multifactorial, and chronic disorder of the ocular surface with disruption of tear film homeostasis as its core trait. Conjunctival goblet cells (CGCs) are specialised secretory cells found in the conjunctival epithelium that participate in tear film formation by secreting mucin. Changes in both the structure and function of CGCs are hallmarks of DED, and imaging assessment of CGCs is important for the diagnosis, classification, and severity evaluation of DED. Existing imaging methods include conjunctival biopsy, conjunctival impression cytology and in vivo confocal microscopy, which can be used to assess the morphology, distribution, and density of the CGCs. Recently, moxifloxacin-based fluorescence microscopy has emerged as a novel technique that enables efficient, non-invasive and in vivo imaging of CGCs. This article presents a comprehensive overview of both the structure and function of CGCs and their alterations in the context of DED, as well as current methods of CGCs imaging assessment. Additionally, potential directions for the visual evaluation of CGCs are discussed.


Assuntos
Túnica Conjuntiva , Síndromes do Olho Seco , Células Caliciformes , Microscopia Confocal , Células Caliciformes/patologia , Células Caliciformes/citologia , Humanos , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/metabolismo , Túnica Conjuntiva/patologia , Túnica Conjuntiva/citologia , Túnica Conjuntiva/diagnóstico por imagem , Microscopia de Fluorescência , Biópsia
6.
Mikrochim Acta ; 191(5): 257, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600405

RESUMO

A new detection platform based on CaCO3-based magnetic micromotor (CaCO3@Fe3O4) integrated with graphene field effect transistor (GFET) was construct and used for on-site SARS-CoV-2 coronavirus pathogen detection. The CaCO3@Fe3O4 micromotor, which was modified with anti-SARS-CoV-2 (labelled antibody, AntiE1), can self-moved in the solution containing hydrochloric acid (HCl) and effective to capture the SARS-CoV-2 coronavirus pathogens. After magnetic field separation, the capture micromotor was detected by GFET, exhibiting a good linear relationship within the range of 1 ag/mL to 100 ng/mL and low detection limit (0.39 ag/mL). Furthermore, the detection platform was also successfully applied to detection of SARS-CoV-2 coronavirus pathogens in soil solution, indicating the potential use in on-site application.


Assuntos
Doenças Transmissíveis , Grafite , Humanos , Anticorpos , SARS-CoV-2 , Fenômenos Magnéticos
7.
J Am Chem Soc ; 145(29): 16228-16237, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37460135

RESUMO

EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.


Assuntos
Quadruplex G , Neoplasias , Humanos , Regiões Promotoras Genéticas , Oncogenes , Receptores ErbB/genética
8.
Bioinformatics ; 38(5): 1223-1230, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34864897

RESUMO

MOTIVATION: Multi-label (ML) protein subcellular localization (SCL) is an indispensable way to study protein function. It can locate a certain protein (such as the human transmembrane protein that promotes the invasion of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) or expression product at a specific location in a cell, which can provide a reference for clinical treatment of diseases such as coronavirus disease 2019 (COVID-19). RESULTS: The article proposes a novel method named ML-locMLFE. First of all, six feature extraction methods are adopted to obtain protein effective information. These methods include pseudo amino acid composition, encoding based on grouped weight, gene ontology, multi-scale continuous and discontinuous, residue probing transformation and evolutionary distance transformation. In the next part, we utilize the ML information latent semantic index method to avoid the interference of redundant information. In the end, ML learning with feature-induced labeling information enrichment is adopted to predict the ML protein SCL. The Gram-positive bacteria dataset is chosen as a training set, while the Gram-negative bacteria dataset, virus dataset, newPlant dataset and SARS-CoV-2 dataset as the test sets. The overall actual accuracy of the first four datasets are 99.23%, 93.82%, 93.24% and 96.72% by the leave-one-out cross validation. It is worth mentioning that the overall actual accuracy prediction result of our predictor on the SARS-CoV-2 dataset is 72.73%. The results indicate that the ML-locMLFE method has obvious advantages in predicting the SCL of ML protein, which provides new ideas for further research on the SCL of ML protein. AVAILABILITY AND IMPLEMENTATION: The source codes and datasets are publicly available at https://github.com/QUST-AIBBDRC/ML-locMLFE/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Software , Aminoácidos , Proteínas de Membrana , Biologia Computacional/métodos
9.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177552

RESUMO

Herein, an ultra-sensitive and facile electrochemical biosensor for procalcitonin (PCT) detection was developed based on NiCoP/g-C3N4 nanocomposites. Firstly, NiCoP/g-C3N4 nanocomposites were synthesized using hydrothermal methods and then functionalized on the electrode surface by π-π stacking. Afterward, the monoclonal antibody that can specifically capture the PCT was successfully linked onto the surface of the nanocomposites with a 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS) condensation reaction. Finally, the modified sensor was employed for the electrochemical analysis of PCT using differential Pulse Voltammetry(DPV). Notably, the larger surface area of g-C3N4 and the higher electron transfer capacity of NiCoP/g-C3N4 endow this sensor with a wider detection range (1 ag/mL to 10 ng/mL) and an ultra-low limit of detection (0.6 ag/mL, S/N = 3). In addition, this strategy was also successfully applied to the detection of PCT in the diluted human serum sample, demonstrating that the developed immunosensors have the potential for application in clinical testing.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Nanocompostos , Humanos , Pró-Calcitonina , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Ouro
10.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4124-4129, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802780

RESUMO

Three new cucurbitane-type triterpenoid glycosides were separated from the ethyl acetate extract of Citrullus colocynthis by a variety of chromatographic techniques. According to the data of NMR, HR-ESI-MS, and/or comparison with the reported data, the three novel cucurbitane-type triterpenoid glycosides were identified as colocynthenin E(1), colocynthenin G(2), and colocynthenin H(3). The cell inflammation model was established with RAW264.7 macrophages exposed to lipopolysaccharide and then used to determine the anti-inflammatory activities of the three compounds. Compounds 2 and 3 showed mild anti-inflammatory activities with the IC_(50) of 48.21 and 40.11 µmol·L~(-1), respectively, compared with that(IC_(50)=7.57 µmol·L~(-1)) of the positive control dexamethasone.


Assuntos
Citrullus colocynthis , Triterpenos , Citrullus colocynthis/química , Triterpenos/farmacologia , Triterpenos/química , Glicosídeos/farmacologia , Glicosídeos/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia
11.
J Am Chem Soc ; 144(14): 6361-6372, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352895

RESUMO

Guanine (G)-oxidation to 8-oxo-7,8-dihydroguanine (OG) by reactive oxygen species in genomic DNA has been implicated with various human diseases. G-quadruplex (G4)-forming sequences in gene promoters are highly susceptible to G-oxidation, which can subsequently cause gene activation. However, the underlying G4 structural changes that result from OG modifications remain poorly understood. Herein, we investigate the effect of G-oxidation on the BLM gene promoter G4. For the first time, we show that OG can induce a G-vacancy-containing G4 (vG4), which can be filled in and stabilized by guanine metabolites and derivatives. We determined the NMR solution structure of the cGMP-fill-in oxidized BLM promoter vG4. This is the first complex structure of an OG-induced vG4 from a human gene promoter sequence with a filled-in guanine metabolite. The high-resolution structure elucidates the structural features of the specific 5'-end cGMP-fill-in for the OG-induced vG4. Interestingly, the OG is removed from the G-core and becomes part of the 3'-end capping structure. A series of guanine metabolites and derivatives are evaluated for fill-in activity to the oxidation-induced vG4. Significantly, cellular guanine metabolites, such as cGMP and GTP, can bind and stabilize the OG-induced vG4, suggesting their potential regulatory role in response to oxidative damage in physiological and pathological processes. Our work thus provides exciting insights into how oxidative damage and cellular metabolites may work together through a G4-based epigenetic feature for gene regulation. Furthermore, the NMR structure can guide the rational design of small-molecule inhibitors that specifically target the oxidation-induced vG4s.


Assuntos
Quadruplex G , Guanina , Guanina/química , Humanos , Oxirredução , Estresse Oxidativo , Regiões Promotoras Genéticas
12.
Neurobiol Dis ; 168: 105690, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35301122

RESUMO

Autism spectrum disorder (ASD) affects ~2% of the population in the US, and monogenic forms of ASD often result in the most severe manifestation of the disorder. Recently, SCN2A has emerged as a leading gene associated with ASD, of which abnormal sleep pattern is a common comorbidity. SCN2A encodes the voltage-gated sodium channel NaV1.2. Predominantly expressed in the brain, NaV1.2 mediates the action potential firing of neurons. Clinical studies found that a large portion of children with SCN2A deficiency have sleep disorders, which severely impact the quality of life of affected individuals and their caregivers. The underlying mechanism of sleep disturbances related to NaV1.2 deficiency, however, is not known. Using a gene-trap Scn2a-deficient mouse model (Scn2atrap), we found that Scn2a deficiency results in increased wakefulness and reduced non-rapid-eye-movement (NREM) sleep. Brain region-specific Scn2a deficiency in the suprachiasmatic nucleus (SCN) containing region, which is involved in circadian rhythms, partially recapitulates the sleep disturbance phenotypes. At the cellular level, we found that Scn2a deficiency disrupted the firing pattern of spontaneously firing neurons in the SCN region. At the molecular level, RNA-sequencing analysis revealed differentially expressed genes in the circadian entrainment pathway including core clock genes Per1 and Per2. Performing a transcriptome-based compound discovery, we identified dexanabinol (HU-211), a putative glutamate receptor modulator, that can partially reverse the sleep disturbance in mice. Overall, our study reveals possible molecular and cellular mechanisms underlying Scn2a deficiency-related sleep disturbances, which may inform the development of potential pharmacogenetic interventions for the affected individuals.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Animais , Transtorno do Espectro Autista/genética , Ritmo Circadiano , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Qualidade de Vida , Sono
13.
Cardiovasc Diabetol ; 21(1): 25, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168605

RESUMO

BACKGROUND: Altered adipokine secretion in dysfunctional adipose tissue facilitates the development of atherosclerotic diseases including lower extremity peripheral artery disease (PAD). Asprosin is a recently identified adipokine and displays potent regulatory role in metabolism, but the relationship between asprosin and lower extremity PAD remains uninvestigated. METHODS: 33 type 2 diabetes mellitus (T2DM) patients (DM), 51 T2DM patients with PAD (DM + PAD) and 30 healthy normal control (NC) volunteers were recruited and the blood samples were collected for detecting the circulatory asprosin level and metabolomic screening. RNA sequencing was performed using the aorta tissues from the type 2 diabetic db/db mice and human umbilical vein endothelial cells (HUVECs) were treated with asprosin to determine its impact on the endothelial-to-mesenchymal transition (EndMT). RESULTS: The circulating levels of asprosin in DM + PAD group were significantly higher than that of NC group and the DM group. Circulating asprosin level was remarkably negatively correlated with ankle-brachial index (ABI), even after adjusting for age, sex, body mass index (BMI) and other traditional risk factors of PAD. Logistic regression analysis revealed that asprosin is an independent risk factor for PAD and receiver-operator characteristic (ROC) curve determined a good sensitivity (74.5%) and specificity (74.6%) of asprosin to distinguish PAD. Data from metabolomics displayed a typical characteristics of de novo amino acid synthesis in collagen protein production by myofibroblasts in patients with PAD and activation of TGF-ß signaling pathway appeared in the aortic tissue of db/db mice. Asprosin directly induces EndMT in HUVECs in a TGF-ß-dependent manner as TGF-ß signaling pathway inhibitor SB431542 erased the promotional effect of asprosin on EndMT. CONCLUSIONS: Elevated circulatory asprosin level is an independent risk factor of lower extremity PAD and might serve as a diagnostic marker. Mechanistically, asprosin directly induces EndMT that participates in vascular injury via activation of TGF-ß signaling pathway. Trial registration This trial was registered at clinicaltrials.gov as NCT05068895.


Assuntos
Diabetes Mellitus Tipo 2 , Doença Arterial Periférica , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana , Humanos , Extremidade Inferior , Camundongos , Doença Arterial Periférica/diagnóstico
14.
Bioorg Chem ; 101: 104045, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32629288

RESUMO

Two novel cucurbitane 3-nor-triterpenoids, named norcolocynthenins A (1) and B (2), were isolated from the fruits of Citrullus colocynthis. The structures including their absolute configurations were determined by extensive spectroscopic analyses and theoretical calculations. Compound 1 features an unprecedented 5/6/6/5-fused ring system while compound 2 possesses a rare lactone moiety at modified ring A. Compounds 1 and 2 showed significant cytotoxic activity against human cancer cell lines of HL-60 (IC50 = 8.32, 6.49 µM) and PC-3 (IC50 = 31.26, 13.42 µM). The plausible biosynthetic pathway of compounds 1 and 2 via a key enzymatic Baeyer-Villiger reaction is proposed.


Assuntos
Citrullus colocynthis/química , Glicosídeos/química , Triterpenos/química , Animais , Humanos , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley
15.
Zhongguo Zhong Yao Za Zhi ; 45(4): 816-824, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32237481

RESUMO

Citrullus colocynthis is widely distributed in the desert regions of the world. C. colocynthis has shown to improve constipation, liver diseases, jaundice, typhoid fever, diabetes and asthma in traditional use. As a kind of exterritorialy medicinal material, C. colocynthis has been used in China and introduced successfully. The main active ingredients of C. colocynthis are cucurbitacin, flavonoids, alkaloids and phenolic acids, which have been proven to have antioxidant, anti-diabetic, anti-pathogenic microorganisms and anti-cancer activities in modern pharmacological research. This paper reviews the traditional application, chemical composition and pharmacological effects of C. colocynthis, and provides reference for the in-depth study for the efficacy and mechanism of different components of C. colocynthis.


Assuntos
Citrullus colocynthis/química , Medicamentos de Ervas Chinesas/farmacologia , Compostos Fitoquímicos/farmacologia , China , Medicamentos de Ervas Chinesas/química , Compostos Fitoquímicos/química
16.
Zhongguo Zhong Yao Za Zhi ; 44(17): 3684-3694, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31602940

RESUMO

Pistacia lentiscus,which belongs to foreign medicine resources,is widely distributed in the Mediterranean and Middle Eastern area. The essential oils are a mixture of several volatile compounds mainly monoterpenes and sesquiterpenes obtained from different parts of P. lentiscus by hydrodistillation. The variability of chemical composition,biological activities and content of essential oil is strongly affected by extraction technology,environmental and sex factors. It is indicated that essential oils of P. lentiscus have kinds of biological activities such as antibacterial,anticancer,anti-atherogenesis,antioxidant,anti-inflammatory and insecticidal activities.Many scholars hold the opinion that combination of different components with synergistic and/or additive actions should account for their biological activities. Due to its diverse efficacy and special taste,the essential oil of P. lentiscus has been extensively used in medicine,food and cosmetics industries. A mini review of chemical constituents and biological activities of essential oil of P. lentiscus in the past20 years is made here to provide valuable reference for the construction of " the Belt and Road".


Assuntos
Óleos Voláteis/química , Óleos Voláteis/farmacologia , Pistacia/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Monoterpenos/química , Monoterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia
17.
J Nat Prod ; 81(9): 2115-2119, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30183289

RESUMO

Four ring-A seco-cucurbitane triterpenoids, colocynthenins A-D (1-4), together with seven known cucurbitane triterpenoids (5-11), were isolated from the fruits of Citrullus colocynthis. Their structures and absolute configurations were elucidated based on spectroscopic analysis and quantum chemical ECD calculations. Compound 1 possesses an unprecedented 2,11-lactone moiety, while compound 2 is the first reported cucurbitane triterpenoid with an unusual cyano group. Compounds 1 and 3 showed acetylcholinesterase inhibitory activities in a standard in vitro assay, with IC50 values of 2.6 and 3.1 µM, respectively.


Assuntos
Citrullus colocynthis/química , Triterpenos/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Frutas/química , Triterpenos/química , Triterpenos/farmacologia
18.
Zhongguo Zhong Yao Za Zhi ; 43(9): 1749-1753, 2018 May.
Artigo em Chinês | MEDLINE | ID: mdl-29902880

RESUMO

Seven aromatic glycosides (1-7), including four phenylethanol glycosides, one phenylmethanol glycoside, one phenylpropane glycoside and one benzoside, were isolated from the methanolic extract of Uighur Medicine Elaeagnus angustifolia flowers. Their structures were elucidated based on the analysis of spectroscopic data (1D, 2D NMR and HR-MS). Compound 1 is a new compound, named as angustifol A. Six known compounds were identified as 2-phenylethyl-O-ß-D-glucopyranoside(2), salidroside (3), vanillic acid 4-O-ß-D-glucopyranoside(4), vanilloloside (5), (Z)-isoconiferin (6), 2-phenylethyl-6-O-α-L-arabinofuranosyl-ß-D-glucopyranoside (7). Compounds 2-7 were isolated from the genus Elaeagnus for the first time. In vitro anti-inflammatory assays revealed that none of these compounds showed good COX inhibitory activities.


Assuntos
Elaeagnaceae , Plantas Medicinais , Flores , Glicosídeos , Medicina Herbária , Estrutura Molecular
19.
Photochem Photobiol Sci ; 16(5): 753-758, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28332693

RESUMO

A new electron transfer type photoactive host-guest supramolecule was constructed by introducing (CH3)2NH2+ cations to the MOF framework. The resulting compound 1 exhibits reversible photochromic property without using photochromic components, resulting from photoinduced electron-transfer between the electron-rich anionic framework and the electron-deficient guest ions. In addition, a photoluminescence "on/off switch" occurs during the coloration-decoloration process. The raw materials are non-poisonous and harmless, hence compound 1 may be more cost-effective, clean, and harmless to the heath than existing photochromic materials.

20.
Med Sci Monit ; 22: 3229-37, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27618395

RESUMO

BACKGROUND Migraine is a chronic disease that interferes with life quality and work productivity. Valproate shows protective effects against migraine, yet the underlying mechanisms are unclear. This study aimed to evaluate the potential effect of valproate on migraine using a rat model of nitroglycerin-induced trigeminovascular activation, as well as to explore the underlying mechanism. MATERIAL AND METHODS Intraperitoneal injection of nitroglycerin was conducted to induce trigeminovascular activation in rats. To explore the protective effect of valproate, a low dose (100 mg/kg) or a high dose (200 mg/kg) of valproate was intraperitoneally injected into rats, and then the levels of 5-hydroxytryptamine and nitric oxide in the peripheral blood were examined. The mtDNA copy number and the protein levels of peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A, and peroxisome proliferator-activated receptor-γ in the spinal trigeminal nucleus were detected to evaluate the biogenesis of mitochondria. The mitochondrial energy metabolism was determined by the mitochondrial membrane potential and the levels of adenosine triphosphate, cytochrome C oxidase, and reactive oxygen species. RESULTS Valproate attenuated nitroglycerin-induced trigeminovascular activation in rats, with reduced scratching behavior and restored 5-hydroxytryptamine and nitric oxide levels. Moreover, the mitochondrial energy metabolism and the biogenesis of mitochondria were preserved by valproate in nitroglycerin-treated rats. CONCLUSIONS The protective effect of valproate against migraine may be achieved through the modulation of mitochondrial biogenesis and function. Our study provides evidence for the potential use of valproate in the treatment of migraine.


Assuntos
Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/fisiopatologia , Nitroglicerina/farmacologia , Nervo Trigêmeo/efeitos dos fármacos , Nervo Trigêmeo/fisiopatologia , Ácido Valproico/farmacologia , Animais , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transtornos de Enxaqueca/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa