RESUMO
BACKGROUND: In recent years, biosafety and green food safety standards have increased the demand for immune enhancers and adjuvants. In the present study, recombinant food-grade Lactococcus lactis (r-L. lactis-Tα1-IFN) expressing thymosin Tα1 and chicken interferon fusion protein was constructed. RESULTS: The in vitro interactions with macrophages revealed a mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate both macrophage J774-Dual™ NF-κB and interferon regulator (IRF) signaling pathways. In vitro interactions with chicken peripheral blood mononuclear cells (PBMCs) demonstrated that a mixture of recombinant r-L. lactis-Tα1-IFN significantly enhanced the expression levels of interferon (IFN)-γ, interleukin (IL)-10, CD80, and CD86 proteins in chicken PBMCs. Animal experiments displayed that injecting a lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate the proliferation of T cells and antigen-presenting cells in chicken PBMCs. Moreover, 16S analysis of intestinal microbiota demonstrated that injection of the lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly improve the structure and composition of chicken intestinal microbiota, with a significant increase in probiotic genera, such as Lactobacillus spp. Results of animal experiments using the lysis mixture of recombinant r-L. lactis-Tα1-IFN as an immune adjuvant for inactivated chicken Newcastle disease vaccine showed that the serum antibody titers of the experimental group were significantly higher than those of the vaccine control group, and the expression levels of cytokines IFN-γ and IL-2 were significantly higher than those of the vaccine control group. CONCLUSION: These results indicate that food-safe recombinant r-L. lactis-Tα1-IFN has potential as a vaccine immune booster and immune adjuvant. This study lays the foundation for the development of natural green novel animal immune booster or immune adjuvant.
Assuntos
Lactococcus lactis , Timosina , Vacinas , Animais , Interferons/metabolismo , Lactococcus , Leucócitos Mononucleares , Adjuvantes Imunológicos/metabolismo , Proteínas Recombinantes/metabolismo , Timosina/metabolismo , Vacinas/metabolismo , Galinhas , Lactococcus lactis/metabolismoRESUMO
The thermodynamic effect of octyl-ß-D-glucopyranoside (OGP) on the formation of methane-1,3-dimethylcyclohexane (DMCH) hydrate was studied in this work. The thermodynamic equilibrium hydrate formation pressures between 275.15 K and 283.15 K were measured by the isothermal pressure search method. Different OGP aqueous solutions (0, 0.1, and 1 wt%) were used in this work. The experimental results show that OGP had no obvious thermodynamic inhibition on methane-DMCH hydrate formation when its concentration was low (0.1 wt%), whereas it had an inhibition on methane-DMCH hydrate formation when its concentration was high (1 wt%). The phase equilibrium hydrate formation pressure of the methane-DMCH-OGP system is about 0.1 MPa higher than that of the methane-DMCH system. The dissociation enthalpies of methane hydrate in different solutions remained uniform, which indicates that OGP was not involved in methane-DMCH hydrate formation. This phenomenon is explained from the perspective of the molecular structure of OGP. As a renewable and biological nonionic surfactant, the concentration of OGP in the liquid phase is low, so OGP can be added to the methane-DMCH system without significant thermodynamic inhibition.
RESUMO
The aim of this study was to determine the influence of four inorganic salts, KCl, NaCl, KBr and NaBr, on the thermodynamic conditions of methane hydrate formation. In order to achieve this, the vapor-liquid water-hydrate (VLWH) equilibrium conditions of methane (CH4) hydrate were measured in the temperature range of 274.15 K-282.15 K by the isothermal pressure search method. The results demonstrated that, in comparison with deionized water, the four inorganic salts exhibited a significant thermodynamic inhibition on CH4 hydrate. Furthermore, the inhibitory effect of Na+ on methane hydrate is more pronounced than that of K+, where there is no discernible difference between Cl- and Br-. The dissociation enthalpy (∆Hdiss) of CH4 hydrate in the four inorganic salt solutions is comparable to that of deionized water, indicating that the inorganic salt does not participate in the formation of hydrate crystals. The Chen-Guo hydrate model and N-NRTL-NRF activity model were employed to forecast the equilibrium conditions of CH4 hydrate in electrolyte solution. The absolute relative deviation (AARD) between the predicted and experimental values were 1.24%, 1.08%, 1.18% and 1.21%, respectively. The model demonstrated satisfactory universality and accuracy. This study presents a novel approach to elucidating the mechanism and model prediction of inorganic salt inhibition of hydrate.
RESUMO
Hydrate-based gas separation (HBGS) has good potential in the separation of helium from helium-rich natural gas. HBGS should be carried out under a pressure higher than the thermodynamic equilibrium hydrate formation pressure (Peq) to ensure the formation of hydrate so that the accurate prediction of Peq is the basis of the determination of HBGS pressure. In this work, the Peq of the helium-rich natural gases with different helium contents (1 mol%, 10 mol%, and 50 mol%) in gas and different tetrahydrofuran (THF) contents (5 wt%, 10 wt%, and 19 wt%) in liquid at different temperatures were experimentally investigated through the isothermal pressure search method. A new thermodynamic model was proposed to predict the Peq of helium-rich natural gas. This model can quantitatively describe the effects of THF and helium on Peq, and it predicts the Peq of the helium-rich natural gases in this work accurately. The average relative deviation of the model is less than 3%. This model can guide the determination of the operating condition of the HBGS of helium-rich natural gas.
RESUMO
Commensal bacteria modulate acute immune responses to infection in hosts. In this study, Enterococcus faecium C171 was screened and isolated. This strain has similar basic characteristics to the reference probiotic, including strong anti-inflammatory and anti-infective effects. E. faecium C171 inhibits the production of pro-Caspase-1 and significantly reduces the production of interleukin-1ß (IL-1ß) in vitro. These reactions were confirmed using the Transwell system. Live E. faecium C171 mainly exerted an inhibitory effect on acute inflammation, whereas the anti-infective and immune-activating effects were primarily mediated by the E. faecium C171-produced bacterial extracellular vesicles (Efm-C171-BEVs). Furthermore, in the specific pathogen-free (SPF) chicken model, oral administration of E. faecium C171 increased the relative abundance of beneficial microbiota (Enterococcus and Lactobacillus), particularly Enterococcus, the most important functional bacteria of the gut microbiota. E. faecium C171 significantly inhibited the acute inflammatory response induced by a highly virulent infectious disease, and reduced mortality in SPF chickens by 75%. In addition, E. faecium C171 induced high levels of CD3+, CD4-, and CD8- immunoregulatory cells and CD8+ killer T cells, and significantly improved the proliferative activity of T cells in peripheral blood mononuclear cells, and the secretion of interferon-γ. These findings indicate that E. faecium C171 and Efm-C171-BEVs are promising candidates for adjuvant treatment of acute inflammatory diseases and acute viral infections.