Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Opt Express ; 32(9): 15882-15892, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859228

RESUMO

To achieve a fiber strain sensor with a large detection range and high sensitivity, this paper proposes a wave structured fiber SPR strain sensor. When subjected to axial strain, the wave structured fiber is stretched axially, increasing the stretchability of the sensor and achieving a large detection range strain sensing. Meanwhile, axial strain reduces the longitudinal amplitude of the fiber wave structure, effectively changing the total reflection angle of the transmitted beam at the peak and valley (SPR incidence angle) to achieve high sensitivity SPR strain sensing. The experiment indicates that the strain detection range of the sensor can reach 0-1800µÎµ, with a maximum strain sensitivity of 36.25pm/µÎµ. The wave structured fiber SPR strain sensor designed in this article provides a new approach to improve the range and sensitivity of strain detection.

2.
Opt Express ; 32(8): 13783-13796, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859339

RESUMO

The conical fiber SPR sensor is easy to manufacture and has been used in biochemical detection research, but it has the problem of structural fragility. This article proposes a spiral cone fiber SPR sensor, which introduces a spiral structure on the 76µm fiber coarse cone, achieving good coupling of the core mode into the cladding mode, and improving the physical strength and practicality of the cone-shaped fiber SPR sensor. By modifying the target protein on the surface of the sensor gold film, specific detection of ginsenoside Rg1, an active ingredient of traditional Chinese medicine ginseng, was achieved. The detection sensitivity was 0.138 nm/(µm/ml) and the detection limit was 0.22µm/ml. The proposed spiral cone fiber SPR sensor provides a new scheme for the specific detection of active ingredients in traditional Chinese medicine, which is structurally stable and physically strong.


Assuntos
Ginsenosídeos , Ressonância de Plasmônio de Superfície , Ginsenosídeos/análise , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Tecnologia de Fibra Óptica/instrumentação , Limite de Detecção
3.
Opt Express ; 31(4): 6411-6425, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823898

RESUMO

Three fiber micro displacement sensors can be combined to realize three-dimensional (3D) displacement sensing, but the system is complex. In this paper, a 3D displacement sensor based on fiber SPR was proposed, which was composed of displacement fiber and sensing fiber. By cascading the eccentric dual-core fiber and graded multimode fiber, the displacement fiber was realized. The V-groove was processed in the vertical and horizontal directions of the graded multimode fiber, and the inclined SPR sensing areas were fabricated to realize the sensing fiber. A straight beam from the middle core of the displacement fiber contacted the vertical V-groove inclined plane of the sensing fiber to realize the Y axis (up and down) direction micro displacement, contacted the horizontal V-groove inclined plane of the sensing fiber to realize the Z axis (front and back) direction micro displacement sensing. An oblique beam from the eccentric core of the displacement fiber cooperated with the sensing fiber to realize the micro displacement sensing in the X-axis (left and right) direction. The testing results indicate that the fiber SPR 3D micro displacement sensor can sense micro displacement in the X axis, Y axis and Z axis, and the wavelength sensitivity is 0.148 nm/µm, -3.724 nm/µm and 3.543 nm/µm, respectively. The light intensity sensitivity is -0.0014a.u./µm, -0.0458a.u./µm and -0.0494a.u./µm, respectively. When adjusting the parameters of eccentric dual-core fiber, the larger the core distance is, the greater the displacement sensitivity in the X-axis direction of the sensor is, and the smaller the detection range is. The proposed sensor can realize 3D micro displacement sensing by itself, which is expected to be used in the field of 3D micro displacement measurement and 3D space precision positioning.

4.
Opt Express ; 31(13): 21212-21224, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381226

RESUMO

The Fiber SPR chip laboratory has become a popular choice in biochemical detection. To meet the needs of different kinds of analytes for the detection range and number of channels of the chip, we proposed a multi-mode SPR chip laboratory based on microstructure fiber in this paper. The chip laboratory was integrated with microfluidic devices made from PDMS and detection units made of bias three-core fiber and dumbbell fiber. By injecting light into different cores of a bias three-core fiber, different detection areas of dumbbell fiber can be selected, enabling the chip laboratory to enter high refractive index detection, multi-channel detection and other working modes. In the high refractive index detection mode, the chip can detect liquid samples with a refractive index range of 1.571-1.595. In multi-channel detection mode, the chip can achieve dual parameter detection of glucose and GHK-Cu, with sensitivities of 4.16 nm/(mg/mL) and 9.729 nm/(mg/mL), respectively. Additionally, the chip can switch to temperature compensation mode. The proposed multi working mode SPR chip laboratory, based on micro structured fiber, offers a new approach for the development of portable testing equipment that can detect multiple analytes and meet multiple requirements.

5.
Opt Express ; 31(23): 38179-38190, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017930

RESUMO

The current temperature-compensated fiber-optic surface plasmon resonance (SPR) biosensors are mainly open-ended outside the sensing structure, and there is a lack of temperature compensation schemes in fiber-optic microfluidic chips. In this paper, we proposed a temperature-compensated optical fiber SPR microfluidic sensor based on micro-nano 3D printing. Through the optical fiber micro-machining technology, the two sensing areas were designed on both sides of the same sensing fiber. The wavelength division multiplexing technology was used to collect the sensing light signals of the two sensing areas at the same time. The specific measurement of berberine and the detection of ambient temperature in the optical fiber SPR biological microfluidic channel were realized, and the temperature compensation matrix relationship was constructed, and then the temperature compensation was realized when measuring berberine biomolecules. Experiments have shown that the temperature sensitivity of the optical fiber SPR microfluidic sensor was 2.18 nm/°C, the sensitivity of the detection of berberine was 0.2646 nm/(µg/ml), the detection limit (LOD) was 0.38 µg/ml, and in a mixed solution showed an excellent specific detection impact.

6.
Opt Express ; 31(25): 42637-42650, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087633

RESUMO

In the context of optical fiber humidity sensing, the long-term stability of sensors in high humidity and dew environments such as bathrooms or marine climates remains a challenge, especially since many humidity sensitive materials are water soluble. In this study, we use methyldiethanolamine, pentaerythritol triacrylate and Eosin Y to form a liquid-solid structure humidity sensitive component, the outermost layer is coated with PDMS passivating layer to ensure the stability and durability of the humidity sensor under the conditions of dew and high humidity. The liquid microcavity of the sensor consists of methyldiethanolamine-pentaerythritol triacrylate composite solution, and the sensitivity is several times higher than that of the liquid-free cavity sensor. The sensitivity of the sensor to temperature is verified (0.43 nm/°C and 0.30 nm/°C, respectively) and temperature crosstalk is compensated using a matrix. The compact structure allows for ultra-fast response (602 ms) and recovery time (349 ms). Our work provides a promising platform for efficient and practical humidity and other gas monitoring systems.

7.
Opt Express ; 31(20): 31768-31779, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37858994

RESUMO

This paper introduces a surface plasmon resonance (SPR) sensor using tapered silica fiber and photopolymer coating for enhanced refractive index (RI) detection. Tapering the silica fiber to a diameter of 10 µm ensures the evanescent wave leaks into a 1.8-µm thick photopolymer film, which increases the average waveguide RI and broadens the RI detection range accordingly. A 50-nm thick single-side gold film is coated on the photopolymer film, exciting SPR and causing less light transmission loss than a double-side gold film. The method avoids the complex microfabrication processes of conventional polymer optical fiber SPR sensors, while the waveguide RI can be controlled by altering the curing time of the photopolymer during fabrication. The sensor has an overall sensitivity of 3686.25 nm/RIU, enabling RI detection of 1.333 - 1.493. Moreover, the sensor has an ultrahigh sensitivity of 6422.9 nm/RIU in the RI range of 1.423 - 1.493. The temperature response is about 1.43 nm/°C at 20 - 50 °C, which has little impact on RI detection. Finally, we demonstrate that the sensor can grade the severity of hepatic steatosis by measuring the RIs of cytoplasm/triglyceride emulsions with superior sensing performance.

8.
Opt Lett ; 48(14): 3641-3644, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450714

RESUMO

This paper presents a novel fiber liquid-pressure sensor that uses photopolymer glue to generate Fabry-Perot (F-P) interference, resulting in high sensitivity and a wide measurement range. The sensor comprises a single-mode fiber and photopolymer glue; the latter adheres to the fiber's end face and is decomposed by a 405-nm laser to create an air channel with a diameter of 5.9 µm and a length of 50 µm. When the air channel is placed underwater, a 17.5-µm air cavity forms between the fiber core and the air-liquid boundary due to the pressure balance, creating an F-P interferometer. Based on experimental results, the sensor has an average pressure sensitivity of 5.68 nm/kPa over 0.49-2.94 kPa. The sensitivity can be maintained at this level across different pressure measurement ranges (up to about 500 kPa) by using a 980-nm laser's radiation pressure to reset the air-liquid boundary. Besides its high sensitivity and wide measurement range, the sensor's straightforward structure, durability, affordability, compactness, and simple construction make it an appealing choice for liquid pressure measurement applications in various fields.

9.
Opt Lett ; 48(10): 2591-2594, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186716

RESUMO

In this Letter, we show stable suspension and directional manipulation of microdroplets on a liquid surface employing simple-mode fiber with a Gaussian beam at 1480-nm wavelength using the photothermal effect. The intensity of the light field generated by the single-mode fiber is used to generate droplets of different numbers and sizes. In addition, the effect of the heat generated at different heights from the liquid surface is discussed through numerical simulation. In this work, the optical fiber is not only free to move at any angle, solving the difficulty that a certain working distance is needed to generate microdroplets on free space, it can also allow the continuous generation and directional manipulation of multiple microdroplets, which is of tremendous scientific relevance and application value in promoting the development and cross-fertilization of life sciences and other interdisciplinary fields.

10.
Opt Lett ; 48(19): 5057-5060, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773384

RESUMO

At present, fiber strain sensors are mainly of the grating type and interference type, while there is relatively little research on fiber surface plasmon resonance (SPR) strain sensors. In this Letter, we propose a highly sensitive fiber SPR strain sensor based on an n-type structure. The strain changes the shape of the fiber n-type structure, causing the transmission mode of light in the fiber to change, thereby changing the SPR incidence angle and causing the SPR resonance valley wavelength to shift, achieving highly sensitive SPR strain sensing. The test results indicate that the strain sensing sensitivity of the proposed sensor reaches 21.33 pm/µÎµ, and two n-type structures are connected in series to obtain a double n-type structure, further enhancing the strain sensing sensitivity to 33.44 pm/µÎµ. This fiber strain sensor has advantages of high sensitivity, low temperature cross talk, strong structural stability, and low production cost, and is expected to become a new solution for wearable intelligent monitoring equipment and strain sensors in the aerospace field.

11.
Opt Lett ; 48(19): 5177-5180, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773414

RESUMO

We propose and experimentally demonstrate a balloon-like optical fiber sensor with an anti-resonance mechanism for the simultaneous measurement of displacement and temperature. The sensor consists of a hollow-core fiber spliced between two single-mode fibers and bent into a balloon-like shape. The balloon-like structure not only increases the contrast of the spectral lines but also improves the displacement sensitivity. Theoretical and experimental results show that the incidence angle of light varies with the change in displacement, resulting in the variation of spectral intensity based on the anti-resonance mechanism. In addition, the temperature change causes the wavelength drift of the spectrum. Thus, by separately demodulating the intensity and wavelength of this sensor, it is possible to measure displacement and temperature simultaneously. The sensitivity of the displacement and temperature of the sensor is 0.043 dB/µm and 20.94 pm/°C, respectively. The proposed optical fiber sensor has a compact structure and simple preparation, making it an ideal choice for simultaneous measurement of displacement and temperature in the fields of micro-manufacturing and structural monitoring in the future.

12.
Opt Lett ; 48(12): 3135-3138, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319045

RESUMO

At present, fiber curvature sensors based on surface plasmon resonance (SPR) are mostly of the multimode fiber core type or cladding type. These types have many SPR modes, resulting that the sensitivity cannot be adjusted and is difficult to improve. In this Letter, a highly sensitive SPR curvature sensor based on graded-index fiber is proposed. The light-injecting fiber is eccentrically connected with the graded-index fiber to inject single-mode light. Due to the self-focusing effect, the light beam propagates in the graded-index multimode fiber with a cosine trajectory, and the cosine beam contacts the flat grooved sensing region fabricated on the graded-index fiber to generate SPR. Due to the single transmission mode of the proposed fiber SPR sensor, the curvature sensing sensitivity is greatly improved. By changing the light injection position of the graded-index multimode fiber, the sensitivity can be adjusted. The proposed curvature sensing probe has a high sensitivity and can identify the bending direction. When bending in the X direction, the sensitivity reaches 5.62 nm/m-1, and when bending in the - X direction, the sensitivity reaches 4.75 nm/m-1, which provides a new scheme for highly sensitive and directionally identifiable curvature measurement.


Assuntos
Tecnologia de Fibra Óptica , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Desenho de Equipamento , Fibras Ópticas
13.
Opt Lett ; 48(20): 5245-5248, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831838

RESUMO

In this Letter, we present a high-strain resolution fiber laser-based sensor (FLS) by a novel optical phase-locked loop (OPLL) interrogation technique based on a root mean square detector (RMSD). The sensor consists of a distributed feedback (DFB) fiber laser as a master laser for strain sensing and a fiber Fabry-Perot interferometer (FFPI) as a reference. The laser carrier locks to the reference by the PDH technique, and the single sideband laser working as a slave laser locks to the DFB sensing element using the OPLL technique, respectively. A strain resolution of 8.19 pε/√Hz at 1 Hz and 35.5 pε in 10 s is achieved in the demonstrational experiments. Significantly, the noise behaves a 1∕f distribution below 0.2 Hz due to the very low pump power for the DFB sensor and an active thermostat testing environment. The proposed OPLL interrogation brings new thinking for the demodulation of FLS. This strain sensor based on FLS has a great performance in strain measurement and can be a powerful tool for geophysical research.

14.
Phys Chem Chem Phys ; 25(22): 15263-15270, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37221883

RESUMO

In this study, we improved the performance of ternary organic solar cells (OSCs) using metal oxides (p-type NiOx and n-type SnO2) as the charge-transport layers (CTLs). The use of NiOx and SnO2 can facilitate charge transportation and suppress charge recombination in PM6:IDIC:Y6-based ternary OSCs, which is beneficial for boosting their performance. As a result, the OSCs with CTLs of NiOx and SnO2 exhibited an improved power conversion efficiency (PCE) of 16.2% (on average), which is higher than that (15.1%) of the control OSCs using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and LiF as the CTLs. The stability of the OSCs was simultaneously improved with the PCE degradation significantly suppressed upon using NiOx and SnO2. After 10 days of storage and measurement under ambient conditions, the PCE degradation was dramatically decreased from 49.7% to 20.3%, which was induced by the high intrinsic stability of NiOx and SnO2. The best OSC using the CTLs of NiOx and SnO2 showed a champion PCE of 16.6%, with a stable power output and negligible hysteresis.

15.
Sensors (Basel) ; 23(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896612

RESUMO

An optical fiber sensor for the simultaneous measurement of microdisplacement and temperature based on balloon-shaped single-mode fibers cascaded with a fiber Bragg grating with two core-offset joints is proposed. The interference between the core mode and cladding mode is caused by the stimulation of the cladding mode by the core-offset joints' structure. The cladding of the core has a distinct refractive index, which causes optical path differences and interference. The balloon-shaped structure realizes mode selection by bending. As the displacement increases, the radius of the balloon-shaped interferometer changes, resulting in a change in the interference fringes of the interferometer, while the Bragg wavelength of the fiber grating remains unchanged. Temperature changes will cause the interference fringes of the interferometer and the Bragg wavelength of the fiber grating to shift. The proposed optical fiber sensor allows for the simultaneous measurement of microdisplacement and temperature. The results of the experiment indicate that the sensitivity of the interferometer to microdisplacement is 0.306 nm/µm in the sensing range of 0 to 200 µm and that the temperature sensitivity is 0.165 nm/°C, respectively. The proposed curvature sensor has the advantages of a compact structure, extensive spectrum of dynamic measurement, high sensitivity, and simple preparation, and has a wide range of potential applications in the fields of structural safety monitoring, aviation industry, and resource exploration.

16.
J Antimicrob Chemother ; 77(8): 2153-2157, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35678277

RESUMO

OBJECTIVES: To characterize the relationship of tet(X4)-positive isolates from different hosts and environments. METHODS: PCR and MALDI-TOF MS were used to identify the tet(X4)-positive isolates. The MICs of 13 antimicrobial agents were determined by broth microdilution. Illumina technology was used to sequence all of the isolates. One isolate was randomly selected from Escherichia coli ST761 clones for long-read sequencing to obtain plasmid sequences. Bioinformatics analysis was used to determine the phylogeny of 46 tet(X4)-positive E. coli ST761 strains. RESULTS: A total of 12 tet(X4)-positive isolates, 8 E. coli and 4 Aeromonas simiae, were obtained from six lairages of a slaughterhouse. These isolates exhibited resistance to at least three classes of antimicrobials, including tigecycline. The majority of them, seven E. coli and three A. simiae, represent separate clonal groups. Notably, the seven E. coli isolates belonged to ST761, a common ST carrying the tet(X4) gene that has been identified in 39 isolates from animals, meat, wastewater and humans from seven Chinese provinces. All 46 tet(X4)-positive E. coli ST761 strains from various sources have a close phylogenetic relationship (0-72 SNPs), with a high nucleotide sequence similarity of resistance genes and the tet(X4)-carrying IncX1-IncFIA(HI1)-IncFIB(K) hybrid plasmid, indicating a clonal relationship of tet(X4)-positive E. coli ST761 among animals, food, the environment and humans. CONCLUSIONS: The clonal relationship of tet(X4)-positive E. coli ST761 between humans and animals poses a previously underestimated threat to public health. To the best of our knowledge, this is the first description of tet(X4)-positive A. simiae.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Tigeciclina
17.
J Med Virol ; 94(9): 4287-4293, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35614524

RESUMO

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, sublineages BA.1 and BA.2, recently became the dominant variants of concern (VOCs) with significantly higher transmissibility than any other variant appeared and markedly greater resistance to neutralization antibodies and original ancestral WA1 spike-matched vaccine. Therefore, it is urgent to develop vaccines against VOCs like Omicron. Unlike the new booming messenger RNA (mRNA) vaccine, protein vaccines have been used for decades to protect people from various kinds of viral infections and have advantages with their inexpensive production protocols and their relative stability in comparison to the mRNA vaccine. Here, we show that sera from BA.1 spike protein vaccinated mice mainly elicited neutralizing antibodies against BA.1 itself. However, a booster with BA.1 spike protein or a bivalent vaccine composed of D614G and BA.1 spike protein-induced not only potent neutralizing antibody response against D614G and BA.1 pseudovirus, but also against BA.2, other four SARS-CoV-2 VOCs (Alpha, Beta, Gamma, and Delta) and SARS-CoV-2-related coronaviruses (pangolin CoV GD-1 and bat CoV RsSHC014). The two recombinant spike protein vaccines method described here lay a foundation for future vaccine development for broad protection against pan-sarbecovirus.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Combinadas , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia
18.
Opt Express ; 30(19): 33886-33895, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242414

RESUMO

A novel demodulation method is presented to expand the measurement dynamic range for fiber optic strain sensors using PDH technology. The new control algorithm uses two integrators to form a 2nd order control, and the FFPI strain sensor can have a dynamic range of 20 dB/octave larger than the PID control method when the input signal frequency decreases a magnitude. A strain resolution of 4.7 pɛ Hz-1/2@10Hz, a 118 dB@10Hz dynamic range without consecution, and 158 dB with consecution is obtained. The experiment results show that the new control method can improve the sensing system's dynamic range with the corner frequency unchanged and without the system noise level degradation.

19.
Opt Express ; 30(20): 36691-36699, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258592

RESUMO

Photonic switches have attractive application prospects in optical communication data networks that require dynamic reconfiguration. Integrating optical switching devices with optical fiber, the most widely deployed photonic technology platform, can realize signal transmission and processing in practical applications. Here, we demonstrate the multilevel optical switching using the phase-change material Ge2Sb2Te5 (GST) integrated on a graded-index multimode fiber. This switching process works by exploiting the significant difference in extinction coefficient between the crystalline state and the amorphous state of the GST. Using GST to achieve the switch function, no external energy source is needed to maintain the existing state of the switch, and the device is nonvolatile. This multi-level optical switch is an all-fiber integrated device. We apply GST to the end facets of the graded-index multimode fiber by magnetron sputtering, which is a reflective structure. A pulsing scheme is used to control the optical propagation state of the optical modulation signal to realize the switching function. It can store up to 11 non-volatile reliable and repeatable levels encoded by the pump source laser with a wavelength of 1550 nm. At the same time, the switching process between states is on the order of hundreds of nanoseconds. The present experimental results demonstrate the feasibility of 11 multilevel states in the field of optical fibers commonly used in communications. It can be well coupled with the all-fiber terminal device. It also shows that the device is still applicable in the 1525 nm∼1610 nm broadband range, promising for designing future multilevel photonic switches and memory devices.

20.
Opt Lett ; 47(22): 6017-6020, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219161

RESUMO

Fiber Bragg gratings and interferometric curvature sensors are easily disturbed by axial strain and temperature, and cascaded multi-channel curvature sensing is difficult. In this letter, a curvature sensor based on fiber bending loss wavelength and the surface plasmon resonance (SPR) mechanism is proposed, which is insensitive to axial strain and temperature. In addition, fiber bending loss valley wavelength demodulation curvature improves the accuracy of bending loss intensity sensing. Experiments show that the bending loss valley of single-mode fiber with different cut-off wavelengths has different working bands which is combined with a plastic-clad multi-mode fiber SPR curvature sensor to realize a wavelength division multiplexing multi-channel curvature sensor. The bending loss valley wavelength sensitivity of single-mode fiber is 0.8474 nm/m-1, and the intensity sensitivity is 0.0036 a.u./m-1. The resonance valley wavelength sensitivity of the multi-mode fiber SPR curvature sensor is 0.3348 nm/m-1, and the intensity sensitivity is 0.0026 a.u./m-1. The proposed sensor is insensitive to temperature and strain, and the working band is controllable, which provides a new, to the best of our knowledge, solution for wavelength division multiplexing multi-channel fiber curvature sensing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa