Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 437, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200030

RESUMO

The surge in anthropogenic CO2 emissions from fossil fuel dependence demands innovative solutions, such as artificial photosynthesis, to convert CO2 into value-added products. Unraveling the CO2 photoreduction mechanism at the molecular level is vital for developing high-performance photocatalysts. Here we show kinetic isotope effect evidence for the contested protonation pathway for CO2 photoreduction on TiO2 nanoparticles, which challenges the long-held assumption of electron-initiated activation. Employing isotopically labeled H2O/D2O and in-situ diffuse reflectance infrared Fourier transform spectroscopy, we observe H+/D+-protonated intermediates on TiO2 nanoparticles and capture their inverse decay kinetic isotope effect. Our findings significantly broaden our understanding of the CO2 uptake mechanism in semiconductor photocatalysts.

2.
ACS Appl Mater Interfaces ; 16(28): 36247-36254, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38963922

RESUMO

Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating C═O bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C-Cx) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C-C0.5 catalyst achieves CO2 reduction reaction rates of 12000-15000 µmol·g-1·h-1 to CO and 1000-3200 µmol·g-1·h-1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.

3.
Nat Commun ; 15(1): 5047, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871750

RESUMO

Direct solar-to-hydrogen conversion from pure water using all-organic heterogeneous catalysts remains elusive. The challenges are twofold: (i) full-band low-frequent photons in the solar spectrum cannot be harnessed into a unified S1 excited state for water-splitting based on the common Kasha-allowed S0 → S1 excitation; (ii) the H+ → H2 evolution suffers the high overpotential on pristine organic surfaces. Here, we report an organic molecular crystal nanobelt through the self-assembly of spin-one open-shell perylene diimide diradical anions (:PDI2-) and their tautomeric spin-zero closed-shell quinoid isomers (PDI2-). The self-assembled :PDI2-/PDI2- crystal nanobelt alters the spin-dependent excitation evolution, leading to spin-allowed S0S1 → 1(TT) → T1 + T1 singlet fission under visible-light (420 nm~700 nm) and a spin-forbidden S0 → T1 transition under near-infrared (700 nm~1100 nm) within spin-hybrid chromophores. With a triplet-triplet annihilation upconversion, a newly formed S1 excited state on the diradical-quinoid hybrid induces the H+ reduction through a favorable hydrophilic diradical-mediated electron transfer, which enables simultaneous H2 and O2 production from pure water with an average apparent quantum yield over 1.5% under the visible to near-infrared solar spectrum.

4.
Chem Sci ; 14(17): 4564-4570, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37152269

RESUMO

Figuring out the specific pathway of semiconductor-mediated proton-coupled electron transfer (PCET) driven by light is essential to solar energy conversion systems. In this work, we reveal that the amount of adsorbed water molecules determines the photo-induced PCET pathway on the TiO2 surface through systematic kinetic solvent isotope effect (KSIE) experiments. At low water content (<1.7 wt%), the photo-induced single-proton/single-electron transfer on TiO2 nanoparticles follows a stepwise PT/ET pathway with the formation of high-energy H+/D+-O[double bond, length as m-dash]C or H+/D+-O-C intermediates, resulting in an inverse KSIE (H/D) ∼0.5 with t Bu3ArO· and KSIE (H/D) ∼1 with TEMPO in methanol-d 0/d 4 systems. However, at high water content (>2 wt%), the PCET reaction follows a concerted pathway with a lower energy barrier, leading to normal KSIEs (H/D) ≥ 2 with both reagents. In situ ATR-FTIR observation and DFT calculations suggest that water molecules' existence significantly lowers the proton/electron transfer energy barrier, which coincides with our experimental observations.

5.
Nat Commun ; 13(1): 6999, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385100

RESUMO

Graphitic carbon nitride has long been considered incapable of splitting water molecules into hydrogen and oxygen without adding small molecule organics despite the fact that the visible-light response and proper band structure fulfills the proper energy requirements to evolve oxygen. Herein, through in-situ observations of a collective C = O bonding, we identify the long-hidden bottleneck of photocatalytic overall water splitting on a single-phased g-C3N4 catalyst via fluorination. As carbon sites are occupied with surface fluorine atoms, intermediate C=O bonding is vastly minimized on the surface and an order-of-magnitude improved H2 evolution rate compared to the pristine g-C3N4 catalyst and continuous O2 evolution is achieved. Density functional theory calculations suggest an optimized oxygen evolution reaction pathway on neighboring N atoms by C-F interaction, which effectively avoids the excessively strong C-O interaction or weak N-O interaction on the pristine g-C3N4.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa