Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Appl Microbiol Biotechnol ; 107(22): 6923-6935, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37698610

RESUMO

Filamentous fungi are widely used in food fermentation and therapeutic protein production due to their prominent protein secretion and post-translational modification system. Aspergillus nidulans is an important model strain of filamentous fungi, but not a fully developed cell factory for heterologous protein expression. One of the limitations is its relatively low capacity of protein secretion. To alleviate this limitation, in this study, the protein secretory pathway and mycelium morphology were stepwise modified. With eGFP as a reporter protein, protein secretion was significantly enhanced through reducing the degradation of heterologous proteins by endoplasmic reticulum-associated protein degradation (ERAD) and vacuoles in the secretory pathway. Elimination of mycelial aggregation resulted in a 1.5-fold and 1.3-fold increase in secretory expression of eGFP in typical constitutive and inducible expression systems, respectively. Combined with these modifications, high secretory expression of human interleukin-6 (HuIL-6) was achieved. Consequently, a higher yield of secretory HuIL-6 was realized by further disruption of extracellular proteases. Overall, a superior chassis cell of A. nidulans suitable for efficient secretory expression of heterologous proteins was successfully obtained, providing a promising platform for biosynthesis using filamentous fungi as hosts. KEY POINTS: • Elimination of mycelial aggregation and decreasing the degradation of heterologous protein are effective strategies for improving the heterologous protein expression. • The work provides a high-performance chassis host △agsB-derA for heterologous protein secretory expression. • Human interleukin-6 (HuIL-6) was expressed efficiently in the high-performance chassis host △agsB-derA.

2.
Nucleic Acids Res ; 49(16): 9594-9605, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34390349

RESUMO

Protein evolution has significantly enhanced the development of life science. However, it is difficult to achieve in vitro evolution of some special proteins because of difficulties with heterologous expression, purification, and function detection. To achieve protein evolution via in situ mutation in vivo, we developed a base editor by fusing nCas with a cytidine deaminase in Bacillus subtilis through genome integration. The base editor introduced a cytidine-to-thymidine mutation of approximately 100% across a 5 nt editable window, which was much higher than those of other base editors. The editable window was expanded to 8 nt by extending the length of sgRNA, and conversion efficiency could be regulated by changing culture conditions, which was suitable for constructing a mutant protein library efficiently in vivo. As proof-of-concept, the Sec-translocase complex and bacitracin-resistance-related protein BceB were successfully evolved in vivo using the base editor. A Sec mutant with 3.6-fold translocation efficiency and the BceB mutants with different sensitivity to bacitracin were obtained. As the construction of the base editor does not rely on any additional or host-dependent factors, such base editors (BEs) may be readily constructed and applicable to a wide range of bacteria for protein evolution via in situ mutation.


Assuntos
Bacillus subtilis/genética , Citidina Desaminase/genética , Evolução Molecular , Proteínas/genética , Sistemas CRISPR-Cas/genética , Citidina/genética , Edição de Genes , Genoma Bacteriano/genética , Instabilidade Genômica/genética , Mutação/genética , Timidina/genética
3.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827944

RESUMO

Koi herpesvirus (KHV) is highly contagious and lethal to cyprinid fish, causing significant economic losses to the carp aquaculture industry, particularly to koi carp breeders. Vaccines delivered through intramuscular needle injection or gene gun are not suitable for mass vaccination of carp. So, the development of cost-effective oral vaccines that are easily applicable at a farm level is highly desirable. In this study, we utilized chitosan-alginate capsules as an oral delivery system for a live probiotic (Lactobacillus rhamnosus) vaccine, pYG-KHV-ORF81/LR CIQ249, expressing KHV ORF81 protein. The tolerance of the encapsulated recombinant Lactobacillus to various digestive environments and the ability of the probiotic strain to colonize the intestine of carp was tested. The immunogenicity and the protective efficacy of the encapsulated probiotic vaccine was evaluated by determining IgM levels, lymphocyte proliferation, expression of immune-related genes, and viral challenge to vaccinated fish. It was clear that the chitosan-alginate capsules protected the probiotic vaccine effectively against extreme digestive environments, and a significant level (P < 0.01) of antigen-specific IgM with KHV-neutralizing activity was detected, which provided a protection rate of ca. 85% for koi carp against KHV challenge. The strategy of using chitosan-alginate capsules to deliver probiotic vaccines is easily applicable for mass oral vaccination of fish.IMPORTANCE An oral probiotic vaccine, pYG-KHV-ORF81/LR CIQ249, encapsulated by chitosan-alginate capsules as an oral delivery system was developed for koi carp against koi herpesvirus (KHV) infection. This encapsulated probiotic vaccine can be protected from various digestive environments and maintain effectively high viability, showing a good tolerance to digestive environments. This encapsulated probiotic vaccine has a good immunogenicity in koi carp via oral vaccination, and a significant level of antigen-specific IgM was effectively induced after oral vaccination, displaying effective KHV-neutralizing activity. This encapsulated probiotic vaccine can provide effective protection for koi carp against KHV challenge, which is handling-stress free for the fish, cost effective, and suitable for the mass oral vaccination of koi carp at a farm level, suggesting a promising vaccine strategy for fish.


Assuntos
Carpas , Doenças dos Peixes/prevenção & controle , Infecções por Herpesviridae/veterinária , Herpesviridae/imunologia , Vacinas contra Herpesvirus/administração & dosagem , Probióticos , Proteínas Virais/imunologia , Administração Oral , Alginatos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Cápsulas , Proliferação de Células , Quitosana , Infecções por Herpesviridae/prevenção & controle , Vacinas contra Herpesvirus/imunologia , Imunogenicidade da Vacina , Imunoglobulina M/sangue , Lacticaseibacillus rhamnosus , Linfócitos/fisiologia , Vacinação em Massa/veterinária , Proteínas Recombinantes de Fusão , Baço/imunologia , Baço/metabolismo , Vacinas Sintéticas/administração & dosagem , Proteínas Virais/genética
4.
Biotechnol Bioeng ; 118(7): 2493-2502, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33760222

RESUMO

Enzymatic synthesis of l-alanine has the advantages of less byproducts, strong stereoselectivity, and high catalytic efficiency. Aspartate 4-decarboxylase (ASD) is used industrially in DL-aspartic acid resolution and l-alanine production because it catalyzes the decarboxylation of l-aspartic acid. In this study, the ASD gene from Acinetobacter radioresistens (ArASD) was cloned, and its enzymatic properties were analyzed. ArASD is a dodecamer and has the highest enzyme activity ever reported to date. The optimal conditions for ArASD catalysis are 50°C and pH 4.5. Site-directed mutagenesis was used to improve ArASD stability under acidic conditions to compensate for its weak acid resistance, and the variant N35D with higher catalytic ability was obtained. The conversion by N35 recombinant cells of l-aspartic acid to l-alanine was 92.5% at pH 4.5% and 99.9% at pH 6.0, whereas that of the wild-type recombinant cells was 29.7% and 31.4%, respectively. Aspartase from Escherichia coli (AspA) was employed with ArASD to construct a dual-enzyme system that catalyzes fumaric acid to l-alanine, and the conversion reached 97.1% using recombinant cells harboring the dual-enzyme system. This study explored the enzymatic properties of ArASD and an effective strategy for the acidic resistance modification of ASD. Moreover, the strain expressing the ArASD variant and AspA engineered in this study has great potential application for the l-alanine production industry, especially in the case of high optical purity requirements.


Assuntos
Acinetobacter , Proteínas de Bactérias , Carboxiliases , Engenharia de Proteínas , Acinetobacter/enzimologia , Acinetobacter/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carboxiliases/química , Carboxiliases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/química
5.
Fish Shellfish Immunol ; 105: 327-329, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32721570

RESUMO

Spring viremia of carp (SVC) is highly contagious and lethal disease in cyprinid fish, in particular common carps (Cyprinus carpio), causing numerous economic losses to the aquaculture industry. SVC is presently endemic disease in Europe, America, and several countries in Asia and its causative agent is spring viremia of carp virus (SVCV). In this study, a chitosan-alginate microcapsule probiotic vaccine expressing G protein of SVCV was prepared, and the immunogenicity in carps of orally administrated with the microcapsule probiotic vaccine was evaluated. Our results showed that the microcapsule probiotic vaccine can induce potent antigen-specific immune responses in carps via oral vaccination, and provide effective anti-SVCV protection for carps. Significantly, the microcapsule probiotic vaccine is suitable for mass fish immunization, suggesting a promising vaccine strategy for fish.


Assuntos
Alginatos/administração & dosagem , Carpas/imunologia , Quitosana/administração & dosagem , Imunização/veterinária , Probióticos/administração & dosagem , Infecções por Rhabdoviridae/veterinária , Vacinas Virais/imunologia , Administração Oral , Animais , Cápsulas , Doenças dos Peixes/prevenção & controle , Rhabdoviridae/genética , Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/virologia , Proteínas Virais/química , Vacinas Virais/administração & dosagem
6.
Biochem Biophys Res Commun ; 518(2): 204-211, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31409485

RESUMO

A Pantoea agglomerans-derived phenylalanine aminomutase (PaPAM) was engineered to improve the biocatalytic synthesis of (S)-ß-phenylalanine, which is an important precursor of pharmaceuticals and peptidomimetics. A semi-rational design strategy based on a combination of surface-amino-acid engineering and the amino acid preference of the thermozyme was applied to counteract the enzyme trade-off between improving its activity and stability. The surface glycine, lysine and serine of PaPAM were mutated to alanine, arginine and alanine, respectively. A K340R mutant was screened with a 2.23-fold increased activity and 2.12-fold improved half-life at 50 °C over those of the wild-type PaPAM. These improvements resulted from the more stable enzymatic conformation as well as the more rigid inner loop in K340R. When tested in a whole-cell biocatalytic reaction, the (S)-ß-phenylalanine volumetric productivity of K340R reached 0.47 g/L·h (1.4-fold greater than that of the wild-type PaPAM), and the conversion rate was improved by 17% compared to that of the wild-type PaPAM. The enzymatic properties of K340R and the resulting (S)-ß-phenylalanine production are among the highest reported, and the results indicate that the described strategy is potent for engineering enzymatic stability and activity of PAM.


Assuntos
Transferases Intramoleculares/metabolismo , Pantoea/enzimologia , Fenilalanina/metabolismo , Engenharia de Proteínas , Biotransformação , Cinética , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo
7.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324629

RESUMO

l-Aspartate has been widely used in medicine and the food and chemical industries. In this study, Serratia marcescens maleate cis-trans isomerase (MaiA) and Escherichia coli aspartase (AspA) were coupled and coexpressed in an engineered E. coli strain in which the byproduct metabolic pathway was inactivated. The engineered E. coli strain containing the dual-enzyme system (pMA) was employed to bioproduce l-aspartate from maleate with a conversion of 98%. We optimized the activity ratio of double enzymes through ribosome binding site (RBS) regulation and molecular modification of MaiA, resulting in an engineered strain: pMA-RBS4-G27A/G171A. The conversion of l-aspartate biotransformed from maleate using the pMA-RBS4-G27A/G171A strain was almost 100%. It required 40 min to complete the whole-cell catalysis, without the intermediate product and byproduct, compared to 120 min before optimization. The induction timing and the amount of inducer in a 5-liter fermentor were optimized for scale-up of the production of l-aspartate. The amount of produced l-aspartate using the cells obtained by fermentation reached 419.8 g/liter (3.15 M), and the conversion was 98.4%. Our study demonstrated an environmentally responsible and efficient method to bioproduce l-aspartate from maleate and provided an available pathway for the industrial production of l-aspartate. This work should greatly improve the economic benefits of l-aspartate, which can now be simply produced from maleate by the engineered strain constructed based on dual-enzyme coupling.IMPORTANCE l-Aspartate is currently produced from fumarate by biological methods, and fumarate is synthesized from maleate by chemical methods in industry. We established a biosynthesis method to produce l-aspartate from maleate that is environmentally responsible, convenient, and efficient. Compared to conventional l-aspartate production, no separation and purification of intermediate products is required, which could greatly improve production efficiency and reduce costs. As environmental issues are attracting increasing attention, conventional chemical methods gradually will be replaced by biological methods. Our results lay an important foundation for the industrialization of l-aspartate biosynthesis from maleate.


Assuntos
Ácido Aspártico/biossíntese , Escherichia coli/metabolismo , Maleatos/metabolismo , Serratia marcescens/enzimologia , Proteínas de Bactérias/metabolismo , Catálise , Escherichia coli/genética , Fermentação , Engenharia Metabólica , Serratia marcescens/genética , cis-trans-Isomerases/metabolismo
8.
BMC Microbiol ; 19(1): 89, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064343

RESUMO

BACKGROUND: Nattokinase (NK), which is a member of the subtilisin family, is a potent fibrinolytic enzyme that might be useful for thrombosis therapy. Extensive work has been done to improve its production for the food industry. The aim of our study was to enhance NK production by tandem promoters in Bacillus subtilis WB800. RESULTS: Six recombinant strains harboring different plasmids with a single promoter (PP43, PHpaII, PBcaprE, PgsiB, PyxiE or PluxS) were constructed, and the analysis of the fibrinolytic activity showed that PP43 and PHpaII exhibited a higher expression activity than that of the others. The NK yield that was mediated by PP43 and PHpaII reached 140.5 ± 3.9 FU/ml and 110.8 ± 3.6 FU/ml, respectively. These promoters were arranged in tandem to enhance the expression level of NK, and our results indicated that the arrangement of promoters in tandem has intrinsic effects on the NK expression level. As the number of repetitive PP43 or PHpaII increased, the expression level of NK was enhanced up to the triple-promoter, but did not increase unconditionally. In addition, the repetitive core region of PP43 or PHpaII could effectively enhance NK production. Eight triple-promoters with PP43 and PHpaII in different orders were constructed, and the highest yield of NK finally reached 264.2 ± 7.0 FU/ml, which was mediated by the promoter PHpaII-PHpaII-PP43. The scale-up production of NK that was promoted by PHpaII-PHpaII-PP43 was also carried out in a 5-L fermenter, and the NK activity reached 816.7 ± 30.0 FU/mL. CONCLUSIONS: Our studies demonstrated that NK was efficiently overproduced by tandem promoters in Bacillus subtilis. The highest fibrinolytic activity was promoted by PHpaII-PHpaII-PP43, which was much higher than that had been reported in previous studies. These multiple tandem promoters were used successfully to control NK expression and might be useful for improving the expression level of the other genes.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/biossíntese , Regiões Promotoras Genéticas , Subtilisinas/biossíntese , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Reatores Biológicos , Fibrinolíticos , Proteínas Recombinantes/genética , Subtilisinas/genética
9.
Biotechnol Bioeng ; 116(8): 1833-1843, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30934114

RESUMO

Nattokinase (NK) is a serine protease of the subtilisin family; as a potent fibrinolytic enzyme, it is potentially useful for thrombosis therapy. For NK to be applied as an oral medicine for the treatment of cardiovascular diseases, it must overcome the extremely acidic environments of the gastrointestinal tract despite its limited acidic stability. In this study, three strategies were adopted to improve the acid resistance of NK: (a) Surface charge engineering, (b) sequence alignment, and (c) mutation based on the literature. Eleven variants were constructed and four single-point mutations were screened out for their distinctive catalytic properties: Q59E increased the specific activity; S78T improved the acid stability; Y217K enhanced the acid and thermal stabilities; and N218D improved the thermostability. Based on these observations, multipoint variants were constructed and characterized, and one variant with better acid stability, catalytic efficiency, and thermostability was obtained. Molecular dynamics simulation was carried out to clarify the molecular mechanism of the increased stability of S78T and Y217K mutants under acidic conditions. This study explored effective strategies to engineer acid resistance of NK; moreover, the NK variants with better catalytic properties found in this study have potential applications for the medical industry.


Assuntos
Bacillus subtilis/enzimologia , Mutagênese Sítio-Dirigida/métodos , Subtilisinas/genética , Ácidos/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Estabilidade Enzimática , Escherichia coli/genética , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Subtilisinas/química , Subtilisinas/metabolismo
10.
Biotechnol Bioeng ; 116(3): 481-489, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30418672

RESUMO

The transition metal (iron or cobalt) is a mandatory part that constitutes the catalytic center of nitrile hydratase (NHase). The incorporation of the cobalt ion into cobalt-containing NHase (Co-NHase) was reported to depend on self-subunit swapping and the activator of the Co-NHase acts as a self-subunit swapping chaperone for subunit exchange. Here we discovered that the activator acting as a metallochaperone transferred the cobalt ion into subunit-fused Co-NHase. We successfully isolated two activators, P14K and NhlE, which were the activators of NHases from Pseudomonas putida NRRL-18668 and the activator of low-molecular-mass NHase from Rhodococcus rhodochrous J1, respectively. Cobalt content determination demonstrated that NhlE and P14K were two cobalt-containing proteins. Substitution of the amino acids involved in the C-terminus of the activators affected the activity of the two NHases, indicating that the potential cobalt-binding sites might be located at the flexible C-terminal region. The cobalt-free NHases could be activated by either of the two activators, and both the two activators activated their cognate NHase more efficiently than did the noncognate ones. This study provided insights into the maturation of subunit-fused NHases and confirmed the metallochaperone function of the self-subunit swapping chaperone.


Assuntos
Cobalto , Hidroliases , Metalochaperonas , Subunidades Proteicas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobalto/química , Cobalto/metabolismo , Hidroliases/química , Hidroliases/metabolismo , Metalochaperonas/química , Metalochaperonas/metabolismo , Modelos Moleculares , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Microb Cell Fact ; 18(1): 96, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142347

RESUMO

BACKGROUND: Promoter evolution by synthetic promoter library (SPL) is a powerful approach to development of functional synthetic promoters to synthetic biology. However, it requires much tedious and time-consuming screenings because of the plethora of different variants in SPL. Actually, a large proportion of mutants in the SPL are significantly lower in strength, which contributes only to fabrication of a promoter library with a continuum of strength. Thus, to effectively obtain the evolved synthetic promoter exhibiting higher strength, it is essential to develop novel strategies to construct mutant library targeting the pivotal region rather than the arbitrary region of the template promoter. In this study, a strategy termed stepwise evolution targeting the spacer of core promoter (SETarSCoP) was established in Bacillus subtilis to effectively evolve the strength of bacterial promoter. RESULTS: The native promoter, PsrfA, from B. subtilis, which exhibits higher strength than the strong promoter P43, was set as the parental template. According to the comparison of conservation of the spacer sequences between - 35 box and - 10 box among a set of strong and weak native promoter, it revealed that 7-bp sequence immediately upstream of the - 10 box featured in the regulation of promoter strength. Based on the conservative feature, two rounds of consecutive evolution were performed targeting the hot region of PsrfA. In the first round, a primary promoter mutation library (pPML) was constructed by mutagenesis targeting the 3-bp sequence immediately upstream of the - 10 box of the PsrfA. Subsequently, four evolved mutants from pPML were selected to construction of four secondary promoter mutation libraries (sPMLs) based on mutagenesis of the 4-bp sequence upstream of the first-round target. After the consecutive two-step evolution, the mutant PBH4 was identified and verified to be a highly evolved synthetic promoter. The strength of PBH4 was higher than PsrfA by approximately 3 times. Moreover, PBH4 also exhibited broad suitability for different cargo proteins, such as ß-glucuronidase and nattokinase. The proof-of-principle test showed that SETarSCoP successfully evolved both constitutive and inducible promoters. CONCLUSION: Comparing with the commonly used SPL strategy, SETarSCoP facilitates the evolution process to obtain strength-evolved synthetic bacterial promoter through fabrication and screening of small-scale mutation libraries. This strategy will be a promising method to evolve diverse bacterial promoters to expand the toolbox for synthetic biology.


Assuntos
Bacillus subtilis/genética , Evolução Molecular Direcionada/métodos , Regiões Promotoras Genéticas , Biblioteca Gênica , Mutagênese/genética , Mutação , Biologia Sintética/métodos
12.
Appl Microbiol Biotechnol ; 103(23-24): 9443-9453, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31696283

RESUMO

ß-alanine is a precursor for the production of pharmaceuticals and food additives that is produced by chemical methods in industry. As concerns about the environment and energy are increasing, biocatalysis using L-aspartate-α-decarboxylase (ADC) to convert L-aspartate to ß-alanine has great potential. Many studies have focused on the catalytic activity of ADC, but these researches were limited to the prokaryotic enzymes. In this study, the gene encoding cysteine sulfinic acid decarboxylase from Tribolium castaneum (TcCSADC) was synthesized and overexpressed in Escherichia coli, and the enzyme was purified and characterized for the first time. It could use L-aspartate as its substrate, and the specific activity was 4.83 µmol/min/mg, which was much higher than that of ADCs from prokaryotes. A homology modeling assay indicated that TcCSADC had a dimer structure. Based on the evolutionary information from thermophilic bacteria, twenty-three variants were constructed to attempt to improve its abilities that transform L-aspartate to ß-alanine. One mutant, G369A, was screened that had improved thermal stability. An analysis of the suitability of the catalytic process showed that the up to 162 g/L ß-alanine could be produced using cells expressing the recombinant G369A variant, which is the highest yield to date. The CSADC from T. castaneum has important value for studies of the mechanism of ADCs and CSADCs from eukaryotes, and the engineered strain containing the G369A variant has great potential for the industrial production of ß-alanine.


Assuntos
Carboxiliases/genética , Carboxiliases/metabolismo , Tribolium/enzimologia , beta-Alanina/biossíntese , Animais , Biocatálise , Escherichia coli/genética , Microbiologia Industrial , Cinética , Especificidade por Substrato
13.
Food Microbiol ; 82: 119-126, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027765

RESUMO

Norovirus (NoV), a major food-borne virus, causes non-bacterial acute gastroenteritis in humans. Berries are generally harvested from low-growing bushes by hand and are minimally processed before being sold to consumers. Therefore, the consumption of berries has been linked to numerous food-borne gastroenteritis outbreaks caused by NoV in many countries. We performed a survey of NoV contamination in commercial fresh/frozen berry fruits collected from 2016 to 2017 in the Heilongjiang Province, the main berry-producing area in China, using a TaqMan-based real-time reverse transcription-PCR assay. Among 900 frozen and 900 fresh domestic retail berry samples, the prevalence of NoV was 9% (81/900) and 12.11% (109/900), including 35.80% (29/81) and 29.36% (32/109) of genotype GI alone, 54.32% (44/81) and 60.55% (66/109) of GII alone, and 9.88% (8/81) and 10.09% (11/109) of both GI and GII, respectively. No NoV was detected among the 677 frozen berry samples for export. Thus, the occurrence of NoV contamination was significantly higher in domestic berries than in exported berries and higher in fresh berries than in frozen berries. This study highlights the need for further risk surveillance for NoV contamination in berries produced in the Heilongjiang Province and recommends region-extended monitoring of retail berries for NoV.


Assuntos
Microbiologia de Alimentos , Frutas/virologia , Norovirus/genética , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , China , Contaminação de Alimentos , Filogenia , RNA Viral/genética
14.
Chembiochem ; 19(9): 949-955, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29493906

RESUMO

Anoxybacillus sp. WB42 pullulanase (PulWB42) is a novel thermophilic amylopullulanase that was assigned to the glycoside hydrolase family 13 subfamily 14 (GH13_14) type I pullulanases in the carbohydrate-active enzymes database. Its N-terminal domain (Met1-Phe101) was identified as the carbohydrate-binding module 68 (CBM68) by homology modeling. The N-domain-deleted PulWB42 exhibited an equivalent Michaelis constant (Km ) for pullulan and significant decreases in pullulytic activity, amylose selectivity, and thermostability relative to PulWB42 having a high α-amylase-to-pullulanase activity ratio. Furthermore, the replacement of Ala90 or Arg93 significantly changed the substrate specificity and catalytic efficiency of PulWB42, whereas Q87A, L173D, and H5A/R6A/T7A showed improvements in thermostability and changes in catalytic kinetics. Therefore, the N domain of PulWB42 is not essential for catalysis, but it does modulate enzyme catalysis, especially with respect to substrate specificity. The modulation was achieved mainly by the Leu86-Arg93 segment adjacent to the CBM48 domain and the catalytic A domain in the modeled structure of PulWB42.


Assuntos
Anoxybacillus/enzimologia , Glicosídeo Hidrolases/metabolismo , Anoxybacillus/química , Anoxybacillus/metabolismo , Estabilidade Enzimática , Glicosídeo Hidrolases/química , Modelos Moleculares , Domínios Proteicos , Especificidade por Substrato , Temperatura
15.
Biotechnol Bioeng ; 115(3): 524-535, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29080350

RESUMO

Optically pure compounds are important in the synthesis of fine chemicals. Using directed evolution of enzymes to obtain biocatalysts that can selectively produce high-value chiral chemicals is often time-, money-, and resource-intensive; traditional semi-rational designs based on structural data and docking experiments are still limited due to the lack of accurate selection of hot-spot residues. In this study, through ligand-protein collision counts based on steered molecular dynamics simulation, we accurately identified four residues related to improving nitrile hydratase stereoselectivity toward rac-mandelonitrile (MAN). All the four selected residues had numerous collisions with rac-MAN. Five mutants significantly shifting stereoselectivity towards (S)-MAN were obtained from site-saturation mutagenesis, one of them, at position ßPhe37, exhibiting efficient production of (S)-MAN with 96.8% eep , was isolated and further analyzed. The increased pulling force observed during SMD simulation was found to be in good coincidence with the formation of hydrogen bonds between (R)-MAN and residue ßHis37. (R)-MAN had to break these barriers to enter the active site of nitrile hydratase and S selectivity was thus improved. The results indicated that combining steered molecular dynamics simulation with a traditional semi-rational design significantly reduced the select range of hot-spot residues for the evolution of NHase stereoselectivity, which could serve as an alternative for the modulation of enzyme stereoselectivity.


Assuntos
Acetonitrilas/química , Proteínas de Bactérias/química , Hidroliases/química , Engenharia de Proteínas , Rhodococcus/enzimologia , Proteínas de Bactérias/genética , Hidroliases/genética , Rhodococcus/genética , Estereoisomerismo
16.
World J Microbiol Biotechnol ; 34(10): 145, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30203131

RESUMO

Bacillus subtilis, belonging to the type species of Bacillus, is a type of soil-derived, low %G+C, endospore-forming Gram-positive bacterium. After the discovery of B. subtilis 168 that displayed natural competence, this bacterium has been intensively considered to be an ideal model organism and a robust host to study several basic mechanisms, such as metabolism, gene regulation, bacterial differentiation, and application for industrial purposes, such as heterologous protein expression and the overproduction of an array of bioactive molecules. Since the first report of heterologous overproduction of recombinant proteins in this strain, the bulk production of a multitude of valuable enzymes, especially industrial enzymes, has been performed on a relatively large scale. Since B. subtilis can non-specifically secrete recombinant proteins using various signal peptides, it has tremendous advantages over Gram-negative bacterial hosts. Along with the report of the complete genome sequence of B. subtilis, a number of genetic tools, including diverse types of plasmids, bacterial promoters, regulatory elements, and signal peptides, have been developed and characterized. These novel genetic elements tremendously accelerated genetic engineering in B. subtilis recombinant systems. In addition, with the development of several complex gene expression systems, B. subtilis has performed a number of more complex functions. This ability enables it to be a substantial chassis in synthetic biology rather than just a workhorse for the overproduction of recombinant proteins. In this review, we review the progress in the development of B. subtilis as a universal platform to overproduce heterologous diverse high-value enzymes. This progress has occurred from the development of biological parts, including the characterization and utilization of native promoters, the fabrication of synthetic promoters and regulatory elements, and the assembly and optimization of genetic systems. Some important industrial enzymes that have been produced in large quantities in this host are also summarized in this review. Furthermore, the ability of B. subtilis to serve as a cellular tool was also briefly recapitulated and reviewed.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Enzimas/biossíntese , Enzimas/genética , Proteínas Recombinantes , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Técnicas Biossensoriais , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Engenharia Genética , Microbiologia Industrial , Proteínas de Membrana , Plasmídeos , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Riboswitch , Subtilisinas , Vacinas , alfa-Amilases
17.
Appl Microbiol Biotechnol ; 101(5): 2107-2120, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27986992

RESUMO

Tuneable gene expression controlled by synthetic biological elements is of great importance to biotechnology and synthetic biology. The synthetic riboswitch is a pivotal type of elements that can easily control the heterologous gene expression in diverse bacteria. In this study, the theophylline-dependent synthetic riboswitch and the corresponding variants with varied spacings between Shine-Dalgarno (SD) sequence and start codon were employed to comprehensively characterize the induction and regulation properties through combining a strong promoter aprE in Bacillus subtilis. Amongst the sets of newly constructed expression elements, the expression element with 9-bp spacing exhibited the higher expression level, a superior induction fold performance, and a considerably lower leaky expression than those with longer or shorter spacings. The riboswitch expression element with 9-bp spacing showed an approximately linear dose dependence from 0 to 8 mM of theophylline. Modification of the SD sequence through the insertion of a single A base prior to the native sequence enables the increase of the expression level post induction while decreasing the induction fold as a result of the elevated leaky level. The riboswitch elements with the engineered SD and the optimal 9-bp spacing exhibit an altered dose dependency in which the approximately linear range shifts to 0-4 mM, although it has a similar profile to the induction process. These results not only provide comprehensive data for the induced expression by a theophylline riboswitch combined with a strong native promoter from B. subtilis but also provide the two pivotal features of SD essential to the modular design of other synthetic riboswitches.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Riboswitch/efeitos dos fármacos , Teofilina/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases/genética , Códon de Iniciação/genética , Elongação Traducional da Cadeia Peptídica/genética , Regiões Promotoras Genéticas/genética , Riboswitch/genética
18.
Can J Microbiol ; 63(6): 516-524, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28257579

RESUMO

To investigate the physiological role of an extracellular aminopeptidase (BSAP168) encoded by the ywaD gene in Bacillus subtilis 168, we constructed the ywaD-deletion mutant (BS-AP-K). Compared with that of the wild-type strain, the maximum growth rate of BS-AP-K was reduced by 28% when grown in soybean protein medium at 37 °C, but not in Luria-Bertani medium. The impaired growth rate was more marked at higher temperature and could be compensated by supplementation of amino acid to the culture media. Further studies showed that in regards to the amino acid compositions and peptide distribution in the culture supernatants, there was an obvious difference between the culture supernatants of wild-type and BS-AP-K strains. In addition, another mutant strain (BS-AP-R) was constructed by replacing ywaD with ywaD-ΔPA to evaluate the effect of a protease-associated domain in BSAP168 on growth. All these findings indicated that BSAP168 played an important role in supplying the amino acids required for growth.


Assuntos
Aminopeptidases/genética , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Aminoácidos , Aminopeptidases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Nitrogênio/metabolismo
19.
Protein Expr Purif ; 127: 81-87, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27426133

RESUMO

Quorum-sensing related promoter srfA (PsrfA) was used to construct autoinducible expression system for production of recombinant proteins in Bacillus subtilis. PsrfA was prominent in the unique property of inducer-free activity that is closely correlated with cell density. Here, using green fluorescent protein (GFP) as the reporter protein, PsrfA was optimized by shortening its sequences and changing the nucleotides at the conserved regions of -35 -15 and -10 regions, obtaining a library of PsrfA derivatives varied in the strength of GFP production. Among all the promoter mutants, the strongest promoter P10 was selected and the strength in GFP expression was 150% higher than that of PsrfA. Heterologous protein of aminopeptidase and nattokinase could be overexpressed by P10, the activities of which were 360% and 50% higher than that of PsrfA, respectively. These results suggested that the enhanced promoter P10 could be used to develop autoinducible expression system for overexpression of heterologous proteins in B. subtilis.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Expressão Gênica , Mutação , Peptídeo Sintases/genética , Regiões Promotoras Genéticas , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Peptídeo Sintases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
20.
Microb Cell Fact ; 15: 66, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27112779

RESUMO

BACKGROUND: Bacillus subtilis, a Gram-positive organism, has been developed to be an attractive expression platform to produce both secreted and cytoplasmic proteins owing to its prominent biological characteristics. We previously developed an auto-inducible expression system containing the srfA promoter (PsrfA) which was activated by the signal molecules acting in the quorum-sensing pathway for competence. The P srfA promoter exhibited the unique property of inducer-free activity that is closely correlated with cell density. RESULTS: To improve the PsrfA-mediated expression system to the high-cell-density fermentation for industrial production in the B. subtilis mutant strain that is unable to sporulate, a spore mutant strain BSG1682 was developed, and the PsrfA promoter was enhanced by promoter engineering. Using green fluorescent protein (GFP) as the reporter, higher fluorescent intensity was observed in BSG1682 with expression from either plasmid or chromosome than that of the wild type B. subtilis 168. Thereafter, the PsrfA was engineered, yielding a library of PsrfA derivatives varied in the strength of GFP expression. The P23 promoter exhibited the best performance, almost twofold stronger than that of P srfA. Two heterologous proteins, aminopeptidase (AP) and nattokinase (NK), were successfully overproduced under the control of P23 in BSG1682. Finally, the capacity of the expression system was demonstrated in batch fermentation in a 5-L fermenter. CONCLUSIONS: The expression system demonstrates prominence in the activity of the auto-inducible promoter. Desired proteins could be highly and stably produced by integrating the corresponding genes downstream of the promoter on the plasmid or the chromosome in strain BSG1682. The expression system is conducive to the industrial production of pharmaceuticals and heterologous proteins in high-cell-density fermentation in BSG1682.


Assuntos
Bacillus subtilis/genética , Clonagem Molecular/métodos , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos/microbiologia , Fermentação/genética , Engenharia Genética/métodos , Proteínas de Fluorescência Verde/genética , Microbiologia Industrial/métodos , Organismos Geneticamente Modificados , Percepção de Quorum/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa