Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(7): e2105196, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34874619

RESUMO

Integration of photovoltaic (PV) and electroluminescent (EL) functions and/or units in one device is attractive for new generation optoelectronic devices but it is challenging to achieve highly comprehensive efficiency. Herein, perovskite solar cells (PSCs) are fabricated, assisted by 3-sulfopropyl methacrylate potassium salt (SPM) additive to tackle this issue. SPMs not only induce large grain size during the film formation but also produce a secondary phase of 2D K2 PbI4 to passivate the grain boundaries (GBs). In addition, its sulfonic acid group and potassium ion can coordinate to lead ion and fill the interstitial defects, respectively. Thus, SPM reduces the defective states and suppresses nonradiative recombination loss. As a result, planar PSC delivers a power conversion efficiency of ≈22%, with a maximum open-circuit voltage (Voc ) of 1.20 V. The Voc is 94% of the radiative Voc limit (1.28 V), higher than the control device (Voc of 1.12 V). In addition, the reciprocity between PV and EL is also correlated to quantify the energy losses and understand the device physics. When operated as a light-emitting diode, the maximum EL external quantum efficiency (EQEEL ) is up to 12.2% (EQEEL of 10.7% under an injection current of short-circuit photocurrent), thus leading to high-performance PV/EL dual functions.

2.
Clin Chem ; 68(6): 826-836, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35290433

RESUMO

BACKGROUND: Metagenomic next-generation sequencing (mNGS) offers the promise of unbiased detection of emerging pathogens. However, in indexed sequencing, the sequential paradigm of data acquisition, demultiplexing, and analysis restrain read assignment in advance and real-time analysis, resulting in lengthy turnaround time for clinical metagenomic detection. METHODS: We described the utility of internal-index adaptors with different lengths of barcode in multiplex sequencing. The base composition for each position within these adaptors was well-balanced to ensure nucleotide diversity and optimal sequencing performance and to achieve the early assignment of reads by first sequencing the barcodes. Combined with an automated library preparation device, we delivered a rapid and real-time bioinformatics pathogen identification solution for the Illumina NextSeq platform. The diagnostic performance was evaluated by testing 153 lower respiratory tract specimens using mNGS in comparison to culture, 16S/internal transcribed spacer amplicon sequencing, and additional PCR-based tests. RESULTS: By calculating the average F1 scores of all read lengths under different threshold values, we established the optimal threshold for pathogens identification, and found that 36 bp was the optimal shortest read length for rapid mNGS analysis. Rapid detection had a negative percentage agreement and positive percentage agreement of 100% and 85.1% for bacteria and 97.4% and 80.3% for fungi, when compared to a composite standard. The rapid mNGS solution enabled accurate pathogen identification in about 9.1 to 10.1 h sample-to-answer turnaround time. CONCLUSIONS: Optimized internal index adaptors combined with a real-time analysis pipeline provide a potential tool for a first-line test in critically ill patients.


Assuntos
Metagenoma , Metagenômica , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenômica/métodos , Sensibilidade e Especificidade
3.
Environ Sci Technol ; 55(12): 8309-8317, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34029063

RESUMO

Lead-acid batteries are a reliable and cost-effective uninterrupted power supply for cars, wheelchairs, and others. Recycling the spent lead-acid batteries has increased cost and could be a serious pollution issue after extensive use. It is important to exploit new-generation application to increase their value. In this article, we used a simple method for recycling spent lead-acid batteries for a useful lead iodide resource with a high purity of over 99% and a recycling yield of 93.1% and then fabricated multifunctional FAPbI3 perovskite diodes using recycled lead iodide (PbI2). The cost of recycled PbI2 based on lab-grade chemicals is estimated to be only 13.6% that of lab-grade PbI2, which undoubtedly greatly reduces the preparation cost of devices in the lab. The external quantum efficiencies of our perovskite diodes prepared with commercial and recycled PbI2 are 19.0 and 18.7%, respectively, which shows that the performance of the device prepared from recycled PbI2 is comparable to that of commercial lab-grade PbI2. Based on the expense of industrial-grade chemicals, the cost of recycled PbI2 is extrapolated to be 70.2% that of industrial-grade PbI2. Therefore, it can not only offer an approach to recycle hazardous solid waste but also save manufacturing cost of new-generation photoelectric devices, leading to earning additional value for lead waste.


Assuntos
Compostos de Cálcio , Fontes de Energia Elétrica , Óxidos , Reciclagem , Titânio
4.
Environ Res ; 183: 109195, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32044570

RESUMO

Biochar (BC) derived from Chinese herbal medicine residues has been investigated for its performance as a potential adsorbent in tetracycline (TC) removal. In the present study, a chemical co-precipitation method was carried out to prepare manganese dioxide modified biochar (Mn-BC) to increase its sorption capacity. The properties of the modified biochar were characterized for further enhancing TC removal from an aqueous solution. Mn-BC was successfully synthesized and resulted in a much higher specific surface area, total pore volume and pore diameter. The sorption kinetics of TC on Mn-BC was described by the pseudo-second-order model. The sorption data of Mn-BC were fitted by Langmuir and Freundlich models. The study findings revealed a maximum adsorption capacity of Mn-BC (1:10) to TC was up to 131.49 mg/g. The adsorption process was endothermic and spontaneous. The degradation of TC was further enhanced by MnO2 acting as an oxidizer on Mn-BC. Overall, the modified biochar derived from Chinese herbal medicine residues is a superior alternative for the removal of TC from an aqueous solution.


Assuntos
Medicamentos de Ervas Chinesas , Tetraciclina , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Cinética , Compostos de Manganês , Óxidos , Tetraciclina/isolamento & purificação
5.
ACS Appl Mater Interfaces ; 15(22): 26778-26786, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219503

RESUMO

The performance of the blue perovskite light-emitting diodes (PeLEDs) is limited by the low photoluminescence quantum yields (PLQYs) and the unstable emission centers. In this work, we incorporate sodium bromide and acesulfame potassium into a quasi-2D perovskite to control the dimension distribution and promote the PLQYs. Benefiting from the efficient energy cascade channel and passivation, the sky-blue PeLED has an external quantum efficiency of 9.7% and no shift of the electroluminescence center under operation voltages from 4 to 8 V. Moreover, the half lifetime of the devices reaches 325 s, 3.3 times that of control devices without additives. This work provides new insights into enhancing the performance of blue PeLEDs.

6.
Environ Sci Pollut Res Int ; 29(38): 57918-57930, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35355188

RESUMO

Aquaculture sediments are a purported sizable pool of antibiotic resistance genes (ARGs). However, the pathways for transmission of ARGs from sediments to animals and humans remain unclear. We conducted an ARG survey in sediments from a bullfrog production facility located in Guangdong, China, and simulated zebrafish breeding systems were constructed, with or without biochar addition in sediments, to explore the effects of biochar on ARGs and their precursors of the sediment and zebrafish gut. After 60 days, 6 subtypes of ARGs and intI1 were detected, with sediments harboring more ARGs than zebrafish gut. The addition of biochar reduced the abundance of ARGs in the sediment and zebrafish gut, as well as suppressed the horizontal transmission of ARGs from sediment to zebrafish gut. Network analysis and partial least squares path modeling revealed that ARG enrichment was mainly affected by bacterial groups dominated by Nitrospirae, Gemmatimonades, Chloroflexi, and Cyanobacteria and intI1. Our findings provide insights into the transmission of ARGs from sediment to animals and highlight the efficacy of biochar amendments to aquaculture sediments to reduce the transmission of ARGs.


Assuntos
Antibacterianos , Lagoas , Animais , Antibacterianos/farmacologia , Aquicultura , Bactérias/genética , Carvão Vegetal , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Humanos , Peixe-Zebra/genética
7.
Mar Life Sci Technol ; 4(2): 222-236, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-37073217

RESUMO

Supplementing exogenous carbon sources is a practical approach to improving shrimp health by manipulating the microbial communities of aquaculture systems. However, little is known about the microbiological processes and mechanisms of these systems. Here, the effects of glucose addition on shrimp growth performance and bacterial communities of the rearing water and the shrimp gut were investigated to address this knowledge gap. The results showed that glucose addition significantly improved the growth and survival of shrimp. Although the α-diversity indices of both bacterioplankton communities and gut microbiota were significantly decreased by adding glucose, both bacterial communities exhibited divergent response patterns to glucose addition. Glucose addition induced a dispersive bacterioplankton community but a more stable gut bacterial community. Bacterial taxa belonging to Ruegeria were significantly enriched by glucose in the guts, especially the operational taxonomic unit 2575 (OTU2575), which showed the highest relative importance to the survival rate and individual weight of shrimp, with the values of 43.8 and 40.6%, respectively. In addition, glucose addition increased the complexity of interspecies interactions within gut bacterial communities and the network nodes from Rhodobacteraceae accounted for higher proportions and linked more with the nodes from other taxa in the glucose addition group than that in control. These findings suggest that glucose addition may provide a more stable gut microbiota for shrimp by increasing the abundance of certain bacterial taxa, such as Ruegeria. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-021-00124-9.

8.
Environ Sci Process Impacts ; 21(12): 2141-2149, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31701991

RESUMO

The purpose of this paper was to examine the effect of microbial fuel cells coupled with solar cells (MFC-SCs). In this study, MFC-SCs were constructed to understand the role of intermittent illumination in electricity generation and sediment remediation based on the sediment microbial fuel cell scenario. Furthermore, the microbial community structure on the anode in the sediment was probed using high-throughput sequencing. We identified that SCs with natural intermittent illumination (12 h per day) can promote the electricity production and nutrient utilization of the sediment of MFCs to the greatest extent, which can help manage solar energy utilization for environmental conversion and control the eutrophication of water bodies.The removal rates of NH3-N, NO3-N, organic matter and TP by the MFC-SC were 46.23% ± 1.06%, 41.50% ± 3.80%, 23.20% ± 1.40% and 24.40 ± 5.50%; in contrast, those of the traditional MFC were 25.10% ± 2.40%, 18.70% ± 4.10%, 14.10% ± 0.90% and 13.00% ± 2.50%, respectively. Meanwhile, the treatment groups in MFC-SCs influenced the species components and microflora structure. The 6329 operational taxonomic units (OTUs) in the control group without solar cells outnumbered those of the treatments of 24 h MFC-SC (5676), 12 h MFC-SC (5664) and 3 h MFC-SC (5592). This can advance the enrichment of dominant bacteria; meanwhile, the microbial process and the mechanisms behind it require further study. These results indicate that MFC-SCs provide a comprehensive method of solar energy utilization and environment remediation.


Assuntos
Fontes de Energia Bioelétrica , Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos , Iluminação , Modelos Teóricos , Energia Solar , Eletricidade , Eletrodos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Microbiota , Poluição da Água/análise
9.
Huan Jing Ke Xue ; 40(3): 1328-1336, 2019 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087981

RESUMO

In this research, Chinese medicine residue of Evodia lepta and corn stalks were chosen as raw materials to prepare biochar (EIBC and CSBC) at 400, 600, and 800℃, for the removal of tetracycline from solution. The biochar was characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effects of pyrolytic temperature, biochar dosages, initial concentration, adsorption time, solution pH, ionic strength, and ambient temperature on the removal of tetracycline from solutions by biochar were investigated. The adsorption behavior of tetracycline by biochar was investigated using adsorption kinetics and adsorption isotherms. The results showed that the adsorption capacity of biochar for tetracycline was elevated with increase in the pyrolysis temperature. The biochar prepared from Chinese medicine residue Evodia lepta at under 800℃ (EIBC800) had the best adsorption properties. Biochar dosages, solution pH, ionic strength, and adsorption time had significant effects on the adsorption of tetracycline by EIBC800 and CSBC800. In contrast, the effect of ambient temperature on tetracycline adsorption was a concentration-dependent process. The adsorption kinetics and isotherms of tetracycline onto EIBC800 and CSBC800 were all fitted to pseudo-second order models (R2 0.9540 and 0.8355) and to a Freundlich equation (R2 between 0.8991-0.9579 and 0.9736-0.9946), respectively. The adsorption process was mainly controlled by chemical reaction, and the tetracycline adsorption process was spontaneous and endothermic. Compared with the corn-stalk derived biochar, EIBC800 had better adsorption capacity for antibiotics than CSBC800 did, which indicated that Chinese medicine residue derived biochar had wider prospects for application in the treatment of wastewater containing antibiotic residues.

10.
Front Microbiol ; 9: 2430, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364349

RESUMO

Commercial microbial agents (e.g., probiotics, microbial products, microorganism preparation et al.) have been widely applied for disease control in shrimp culture. However, the effect of these microbial agents (MA) on shrimp health is unstable and the underlying mechanism remains unclear. The effect of MA can probably be achieved by influencing the bacterial community of shrimp culture system. To test this hypothesis, we used 16S rRNA gene amplicon sequencing to investigate the dynamics of both planktonic and intestinal bacterial composition in shrimp culture ponds with or without commercial MA applied weekly. The results showed that MA application increased the temporal turnover rate of bacterioplankton community. Within 1 week, MA-treatment significantly drove bacterioplankton community composition to divert from that without MA-treatment at day 2 after MA application, but the deviation tended to vanish at days 4 and 7. At day 21, a significant difference was observed in shrimp intestinal bacterial community between two groups. The relative abundance of Rhodobacteraceae in shrimp intestine was significantly greater in the MA-treated group than that in the control. However, MA-treatment did not significantly improve the growth or survival ratio of shrimp. This study suggest that MA works in terms of accelerating bacterioplankton community turnover and shifting intestinal bacterial community, however, its effect on shrimp growth might vary greatly and might be improved by optimizing the method in activation and application and more investigation on the microbial ecological process of shrimp culture system is needed before we develop and apply probiotics more efficiently.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa